Bayesian Analysis

Feedback and Modularization in a Bayesian Meta–analysis of Tree Traits Affecting Forest Dynamics

Kiona Ogle, Jarrett Barber, and Karla Sartor

Full-text: Open access


We describe a unique application of modularization in the context of a Bayesian meta–analysis of quantitative information obtained from the literature. Incomplete reporting, resulting in large amounts of missing data, is common in many meta–analyses, and, in this study, it led to poor mixing and identifiability problems in a fully Bayesian meta–analysis model. As an alternative to the full Bayesian approach, we modularized model components (e.g., modules of covariates, sample sizes, and standard errors) to prevent missing covariate data in these modules from allowing feedback that would otherwise affect parameters in the covariate module (direct feedback control) or affect covariate effects parameters in the mean model for the response (indirect feedback control). The combination of direct and indirect feedback control greatly improves mixing and facilitates convergence of Markov chain Monte Carlo (MCMC), yielding realistic pseudo–posteriors. Thus, our modularization approach allowed us to address important limitations of existing meta–analytic methods by accommodating incomplete reporting and by considering all model quantities as stochastic, including the response variable of interest (e.g., a sample mean) and sample sizes, standard errors, and all covariates, reported or not. We illustrate our approach using data summaries extracted from literature on specific leaf area (SLA) of trees, an important functional trait linked to tree growth and forest dynamics and a key parameter in models of forest responses to climate change. A hierarchical model based on taxonomic relationships allows borrowing of strength to infer SLA for 305 tree species in the United States based on information for 158 of those species. In the context of the SLA meta–analysis, we discuss problems that arise from feedback among model components and provide ecological arguments for modularization—for “cutting feedback.” We anticipate that our approach may be applied to meta–analyses of other important tree traits and to similar meta–analytical studies in general.

Article information

Bayesian Anal., Volume 8, Number 1 (2013), 133-168.

First available in Project Euclid: 4 March 2013

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

cutting feedback ecological meta–analysis hierarchical Bayesian model incomplete reporting leaf traits literature data missing data modularization plant functional traits specific leaf area TreeTraits database variable reporting


Ogle, Kiona; Barber, Jarrett; Sartor, Karla. Feedback and Modularization in a Bayesian Meta–analysis of Tree Traits Affecting Forest Dynamics. Bayesian Anal. 8 (2013), no. 1, 133--168. doi:10.1214/13-BA806.

Export citation


  • Abrams, K. R., Gillies, C. L., and Lambert, P. C. (2005). “Meta-analysis of heterogeneously reported trials assessing change from baseline.” Statistics in Medicine, 24: 3823–3844.
  • Ackerly, D. D., Knight, C. A., Weiss, S. B., Barton, K., and Starmer, K. P. (2002). “Leaf size, specific leaf area and microhabitat distribution of chaparral woody plants: contrasting patterns in species level and community level analyses.” Oecologia, 130(3): 449–457.
  • Barrowman, N. J., Myers, R. A., Hilborn, R., Kehler, D. G., and Field, C. A. (2003). “The variability among populations of coho salmon in the maximum reproductive rate and depensation.” Ecological Applications, 13(3): 784–793.
  • Bonan, G. B., Levis, S., Sitch, S., Vertenstein, M., and Oleson, K. W. (2003). “A dynamic global vegetation model for use with climate models: concepts and description of simulated vegetation dynamics.” Global Change Biology, 9(11): 1543–1566.
  • Brooks, S. P. and Roberts, G. O. (1998). “Convergence assessment techniques for Markov chain Monte Carlo.” Statistics and Computing, 8(4): 319–335.
  • Burr, D. and Doss, H. (2005). “A Bayesian semiparametric model for random-effects meta-analysis.” Journal of the American Statistical Association, 100(469): 242–251.
  • Casella, G. and Berger, R. L. (2002). Statistical Inference. Pacific Grove, CA: Duxbury.
  • Chen, H. Y. H. (1997). “Interspecific responses of planted seedlings to light availability in interior British Columbia: survival, growth, allometric patterns, and specific leaf area.” Canadian Journal of Forest Research, 27(9): 1383–1393.
  • Chen, H. Y. H., Klinka, K., and Kayahara, G. J. (1996). “Effects of light on growth, crown architecture, and specific leaf area for naturally established Pinus contorta var latifolia and Pseudotsuga menziesii var glauca saplings.” Canadian Journal of Forest Research, 26(7): 1149–1157.
  • Chmura, D. J. and Tjoelker, M. G. (2008). “Leaf traits in relation to crown development, light interception and growth of elite families of loblolly and slash pine.” Tree Physiology, 28(5): 729–742.
  • Chung, Y. S., Dey, D. K., and Jang, J. H. (2002). “Semiparametric hierarchical selection models for Bayesian meta analysis.” Journal of Statistical Computation and Simulation, 72(10): 825–839.
  • Conlon, E. M., Song, J. J., and Liu, A. (2007). “Bayesian meta-analysis models for microarray data: a comparative study.” BMC Bioinformatics, 8: doi:10.1186/1471–2105–8–80.
  • Cornelissen, J. H. C., Lavorel, S., Garnier, E., Diaz, S., Buchmann, N., Gurvich, D. E., Reich, P. B., ter Steege, H., Morgan, H. D., van der Heijden, M. G. A., Pausas, J. G., and Poorter, H. (2003). “A handbook of protocols for standardised and easy measurement of plant functional traits worldwide.” Australian Journal of Botany, 51(4): 335–380.
  • Cramer, W., Bondeau, A., Woodward, F. I., Prentice, I. C., Betts, R. A., Brovkin, V., Cox, P. M., Fisher, V., Foley, J. A., Friend, A. D., Kucharik, C., Lomas, M. R., Ramankutty, N., Sitch, S., Smith, B., White, A., and Young-Molling, C. (2001). “Global response of terrestrial ecosystem structure and function to CO$_{2}$ and climate change: results from six dynamic global vegetation models.” Global Change Biology, 7(4): 357–373.
  • Dong, M. (1993). “Morphological plasticity of the clonal herb Lamiastrum galeobdolon (L.) Ehrend. & Polatschek in response to partial shading.” New Phytologist, 124(2): 291–300.
  • Dunson, D. B., Xue, Y., and Carin, L. (2008). “The matrix stick-breaking process: Flexible Bayes meta-analysis.” Journal of the American Statistical Association, 103(481): 317–327.
  • Duursma, R. A., Marshall, J. D., Nippert, J. B., Chambers, C. C., and Robinson, A. P. (2005). “Estimating leaf-level parameters for ecosystem process models: a study in mixed conifer canopies on complex terrain.” Tree Physiology, 25(11): 1347–1359.
  • Ellsworth, D. S. and Reich, P. B. (1993). “Canopy structure and vertical patterns of photosynthesis and related leaf traits in a deciduous forest.” Oecologia, 96(2): 169–178.
  • Furukawa, T. A., Barbui, C., Cipriani, A., Brambilla, P., and Watanabe, N. (2006). “Imputing missing standard deviations in meta-analyses can provide accurate results.” Journal of Clinical Epidemiology, 59(1): 7–10.
  • Gelman, A. (2006). “Prior distributions for variance parameters in hierarchical models.” Bayesian Analysis, 1(3): 515–533.
  • Gelman, A., Carlin, J. B., Stern, H. S., and Rubin, D. B. (2004). Bayesian Data Analysis. Boca Raton: Chapman and Hall/CRC Press.
  • Gurevitch, J., Curtis, P. S., and Jones, M. H. (2001). “Meta-analysis in ecology.” Advances in Ecological Research, 32: 199–247.
  • Gurevitch, J. and Hedges, L. V. (1999). “Statistical issues in ecological meta-analyses.” Ecology, 80(4): 1142–1149.
  • Harley, P. C. and Baldocchi, D. D. (1995). “Scaling carbon dioxide and water vapour exchange from leaf to canopy in a deciduous forest. I. Leaf model parametrization.” Plant Cell and Environment, 18(10): 1146–1156.
  • Harley, S. J. and Myers, R. A. (2001). “Hierarchical Bayesian models of length-specific catchability of research trawl surveys.” Canadian Journal of Fisheries and Aquatic Sciences, 58(8): 1569–1584.
  • Hartung, J., Knapp, G., and Sinha, B. K. (2008). Statistical Meta-Analysis with Applications. Hoboken, NJ: John Wiley & Sons, Inc.
  • Hedges, L. V., Gurevitch, J., and Curtis, P. S. (1999). “The meta-analysis of response ratios in experimental ecology.” Ecology, 80(4): 1150–1156.
  • Helser, T. E. and Lai, H. L. (2004). “A Bayesian hierarchical meta-analysis of fish growth: with an example for North American largemouth bass, Micropterus salmoides.” Ecological Modelling, 178(3-4): 399–416.
  • Higgins, J. P. T., Thompson, S. G., and Spiegelhalter, D. J. (2009). “A re-evaluation of random-effects meta-analysis.” Journal of the Royal Statistical Society Series A-Statistics in Society, 172: 137–159.
  • Hoffmann, W. A., Franco, A. C., Moreira, M. Z., and Haridasan, M. (2005). “Specific leaf area explains differences in leaf traits between congeneric savanna and forest trees.” Functional Ecology, 19(6): 932–940.
  • Jackson, C. H., Best, N. G., and Richardson, S. (2009). “Bayesian graphical models for regression on multiple data sets with different variables.” Biostatistics, 10(2): 335–351.
  • Kattge, J., Ogle, K., Boenisch, G., Diaz, S., Lavorel, S., Madin, J., Nadrowski, K., Noellert, S., Sartor, K., and Wirth, C. (2011). “A generic structure for plant trait databases.” Methods in Ecology and Evolution, 2: 202–213.
  • Knops, J. M. H. and Reinhart, K. (2000). “Specific leaf area along a nitrogen fertilization gradient.” American Midland Naturalist, 144(2): 265–272.
  • Koike, T., Kitao, M., Maruyama, Y., Mori, S., and Lei, T. T. (2001). “Leaf morphology and photosynthetic adjustments among deciduous broad-leaved trees within the vertical canopy profile.” Tree Physiology, 21(12-13): 951–958.
  • Lajeunesse, M. J. and Forbes, M. R. (2003). “Variable reporting and quantitative reviews: a comparison of three meta-analytical techniques.” Ecology Letters, 6(5): 448–454.
  • Liermann, M. and Hilborn, R. (1997). “Depensation in fish stocks: a hierarchic Bayesian meta-analysis.” Canadian Journal of Fisheries and Aquatic Sciences, 54(9): 1976–1984.
  • Liu, F., Bayarri, M., and Berger, J. (2009). “Modularization in Bayesian analysis, with emphasis on analysis of computer models.” Bayesian Analysis, 4(1): 119–150.
  • Lunn, D., Best, N., Spiegelhalter, D., Graham, G., and Neuenschwander, B. (2009a). “Combining MCMC with ‘sequential’ PKPD modelling.” Journal of Pharmacokinetics and Pharmacodynamics, 36(1): 19–38.
  • Lunn, D., Spiegelhalter, D., Thomas, A., and Best, N. (2009b). “The BUGS project: Evolution, critique and future directions (with discussion).” Statistics in Medicine, 28: 3049–3082.
  • Lunn, D. J., Thomas, A., Best, N., and Spiegelhalter, D. (2000). “WinBUGS - A Bayesian modelling framework: Concepts, structure, and extensibility.” Statistics and Computing, 10: 325–337.
  • Lusk, C. H. and Warton, D. I. (2007). “Global meta-analysis shows that relationships of leaf mass per area with species shade tolerance depend on leaf habit and ontogeny.” New Phytologist, 176(4): 764–774.
  • Meier, I. C. and Leuschner, C. (2008). “Leaf size and leaf area index in Fagus sylvatica forests: Competing effects of precipitation, temperature, and nitrogen availability.” Ecosystems, 11(5): 655–669.
  • Melillo, J. M., McGuire, A. D., Kicklighter, D. W., Moore, B., Vorosmarty, C. J., and Schloss, A. L. (1993). “Global climate change and terrestrial net primary production.” Nature, 363(6426): 234–240.
  • Miles, P., Brand, G., Alerich, C., Bednar, L., Woudenberg, S., Glover, J., and Ezzell, E. (2001). “The Forest Inventory and Analysis Database: Database Description and Users Manual.” USDA Forest Service, Report NC-218.
  • Millar, R. B. and Methot, R. D. (2002). “Age-structured meta-analysis of US West Coast rockfish (Scorpaenidae) populations and hierarchical modeling of trawl survey catchabilities.” Canadian Journal of Fisheries and Aquatic Sciences, 59(2): 383–392.
  • Molitor, N. T., Best, N., Jackson, C., and Richardson, S. (2009). “Using Bayesian graphical models to model biases in observational studies and to combine multiple sources of data: application to low birth weight and water disinfection by-products.” Journal of the Royal Statistical Society Series A-Statistics in Society, 172: 615–637.
  • Niinemets, U. (2001). “Global-scale climatic controls of leaf dry mass per area, density, and thickness in trees and shrubs.” Ecology, 82(2): 453–469.
  • Norby, R. J., Wullschleger, S. D., Gunderson, C. A., Johnson, D. W., and Ceulemans, R. (1999). “Tree responses to rising CO$_{2}$ in field experiments: implications for the future forest.” Plant Cell and Environment, 22(6): 683–714.
  • Ogle, K. and Pacala, S. W. (2009). “A modeling framework for inferring tree growth and allocation from physiological, morphological and allometric traits.” Tree Physiology, 29: 587–605.
  • Osenberg, C. W., Sarnelle, O., and Cooper, S. D. (1997). “Effect size in ecological experiments: The application of biological models in meta-analysis.” American Naturalist, 150(6): 798–812.
  • Osenberg, C. W., Sarnelle, O., and Goldberg, D. E. (1999). “Meta-analysis in ecology: Concepts, statistics, and applications.” Ecology, 80(4): 1103–1104.
  • Picard, G., Woodward, F. I., Lomas, M. R., Pellenq, J., Quegan, S., and Kennedy, M. (2005). “Constraining the Sheffield dynamic global vegetation model using stream-flow measurements in the United Kingdom.” Global Change Biology, 11(12): 2196–2210.
  • Popma, J. and Bongers, F. (1988). “The effect of canopy gaps on growth and morphology of seedlings of rain forest species.” Oecologia, 75(4): 625–632.
  • Reich, P. B., Ellsworth, D. S., and Walters, M. B. (1998a). “Leaf structure (specific leaf area) modulates photosynthesis-nitrogen relations: evidence from within and across species and functional groups.” Functional Ecology, 12(6): 948–958.
  • Reich, P. B., Tjoelker, M. G., Walters, M. B., Vanderklein, D. W., and Bushena, C. (1998b). “Close association of RGR, leaf and root morphology, seed mass and shade tolerance in seedlings of nine boreal tree species grown in high and low light.” Functional Ecology, 12(3): 327–338.
  • Sacks, J., Welch, W. J., Mitchell, T. J., and Wynn, H. P. (1989). “Design and analysis of computer experiments.” Statistical Science, 4: 409–423.
  • Sands, P. J. and Landsberg, J. J. (2002). “Parameterisation of 3-PG for plantation grown Eucalyptus globulus.” Forest Ecology and Management, 163(1-3): 273–292.
  • Schimel, D. S. (1995). “Terrestrial ecosystems and the carbon cycle.” Global Change Biology, 1(1): 77–91.
  • Schmid, C. H., Stark, P. C., Berlin, J. A., Landais, P., and Lau, J. (2004). “Meta-regression detected associations between heterogeneous treatment effects and study-level, but not patient-level, factors.” Journal of Clinical Epidemiology, 57(7): 683–697.
  • Spiegelhalter, D., Thomas, A., Best, N., and Lunn, D. (2003). “WinBUGS Version 1.4 User Manual.” Technical report, Medical Research Council Biostatistics Unit.
  • Steele, M. J., Coutts, M. P., and Yeoman, M. M. (1989). “Developmental changes in Sitka spruce as indices of physiological age. I. Changes in needle morphology.” New Phytologist, 113(3): 367–375.
  • Sutton, A. J. and Abrams, K. R. (2001). “Bayesian methods in meta-analysis and evidence synthesis.” Statistical Methods in Medical Research, 10(4): 277–303.
  • Sutton, A. J. and Higgins, J. P. T. (2008). “Recent developments in meta-analysis.” Statistics in Medicine, 27: 625–650.
  • Tang, J. Y. and Zhuang, Q. L. (2008). “Equifinality in parameterization of process-based biogeochemistry models: A significant uncertainty source to the estimation of regional carbon dynamics.” Journal of Geophysical Research-Biogeosciences, 113(G4): G04010.
  • — (2009). “A global sensitivity analysis and Bayesian inference framework for improving the parameter estimation and prediction of a process-based Terrestrial Ecosystem Model.” Journal of Geophysical Research-Atmospheres, 114: D15303.
  • Tatarinov, F. A. and Cienciala, E. (2006). “Application of BIOME-BGC model to managed forests 1. Sensitivity analysis.” Forest Ecology and Management, 237(1-3): 267–279.
  • USDA NRCS (2008). The PLANTS Database. Baton Rouge, LA: USDA Natural Resources Conservation Service National Plant Data Center
  • Wang, B., Zou, X., and Zhu, J. (2000). “Data assimilation and its applications.” Proceedings of the National Academy of Sciences, 97(21): 11143–11144.
  • Wiebe, N., Vandermeer, B., Platt, R. W., Klassen, T. P., Moher, D., and Barrowman, N. J. (2006). “A systematic review identifies a lack of standardization in methods for handling missing variance data.” Journal of Clinical Epidemiology, 59(4): 342–353.
  • Wilson, P. J., Thompson, K., and Hodgson, J. G. (1999). “Specific leaf area and leaf dry matter content as alternative predictors of plant strategies.” New Phytologist, 143(1): 155–162.
  • Wramneby, A., Smith, B., Zaehle, S., and Sykes, M. T. (2008). “Parameter uncertainties in the modelling of vegetation dynamics - Effects on tree community structure and ecosystem functioning in European forest biomes.” Ecological Modelling, 216(3-4): 277–290.
  • Wright, I. J., Reich, P. B., Westoby, M., Ackerly, D. D., Baruch, Z., Bongers, F., Cavender-Bares, J., Chapin, T., Cornelissen, J. H. C., Diemer, M., Flexas, J., Garnier, E., Groom, P. K., Gulias, J., Hikosaka, K., Lamont, B. B., Lee, T., Lee, W., Lusk, C., Midgley, J. J., Navas, M. L., Niinemets, U., Oleksyn, J., Osada, N., Poorter, H., Poot, P., Prior, L., Pyankov, V. I., Roumet, C., Thomas, S. C., Tjoelker, M. G., Veneklaas, E. J., and Villar, R. (2004). “The worldwide leaf economics spectrum.” Nature, 428(6985): 821–827.

Supplemental materials