Bayesian Analysis

Comment on Article by Schmidl et al.

Mark Girolami and Antonietta Mira

Full-text: Open access

Article information

Source
Bayesian Anal., Volume 8, Number 1 (2013), 27-32.

Dates
First available in Project Euclid: 4 March 2013

Permanent link to this document
https://projecteuclid.org/euclid.ba/1362406649

Digital Object Identifier
doi:10.1214/13-BA801B

Mathematical Reviews number (MathSciNet)
MR3036251

Zentralblatt MATH identifier
1329.62131

Citation

Girolami, Mark; Mira, Antonietta. Comment on Article by Schmidl et al. Bayesian Anal. 8 (2013), no. 1, 27--32. doi:10.1214/13-BA801B. https://projecteuclid.org/euclid.ba/1362406649


Export citation

References

  • Calderhead, B. and Girolami, M. (2011). “Statistical analysis of nonlinear dynamical systems using differential geometric sampling methods.” Interface Focus, 1(6): 821–835.
  • El Moselhy, T. A. and Marzouk, Y. M. (2012). “Bayesian inference with optimal maps.” Journal of Computational Physics, 231(23): 7815–7850.
  • Girolami, M. and Calderhead, B. (2011). “Riemann manifold Langevin and Hamiltonian Monte Carlo methods.” Journal of the Royal Statistical Society: Series B (Statistical Methodology), 73(2): 123–214.
  • Green, P. J. and Mira, A. (2001). “Delayed rejection in reversible jump Metropolis-Hastings.” Biometrika, 88(4): 1035–1053.
  • Gutenkunst, R. N., Waterfall, J. J., Casey, F. P., Brown, K. S., Myers, C. R., and Sethna, J. P. (2007). “Universally Sloppy Parameter Sensitivities in Systems Biology Models.” PLOS Computational Biology, 3(10): 1871 – 1878.
  • Maiwald, T. and Timmer, J. (2008). “Dynamical modeling and multi-experiment fitting with PottersWheel.” Bioinformatics, 24(18): 2037–2043.
  • Mira, A., Solgi, R., and Imparato, D. (2012). “Zero Variance Markov Chain Monte Carlo for Bayesian Estimators.” Statistics and Computing, DOI 10.1007/s11222–012–9344–6.
  • Ramsay, J. O., Hooker, G., Campbell, D., and Cao, J. (2007). “Parameter estimation for differential equations: a generalized smoothing approach.” Journal of the Royal Statistical Society: Series B (Statistical Methodology), 69(5): 741–796.
  • Raue, A., Kreutz, C., Theis, F. J., and Timmer, J. (2013). “Joining Forces of Bayesian and Frequentist Methodology: A Study for Inference in the Presence of Non-Identifiability.” Journal of the Philosophical Transactions of the Royal Society, to appear, http://arxiv.org/abs/1202.4605.
  • Tierney, L. and Mira, A. (1999). “Some adaptive Monte Carlo methods for Bayesian inference.” Statistics in Medicine, 18: 2507–2515.
  • Toni, T., Welch, D., Strelkowa, N., Ipsen, A., and Stumpf, M. P. H. (2009). “Approximate Bayesian computation scheme for parameter inference and model selection in dynamical systems.” Journal of The Royal Society Interface, 6(31): 187–202.
  • Wilkinson, D. J. (2009). “Stochastic modelling for quantitative description of heterogeneous biological systems.” Nature Reviews: Genetics, 10(2): 122–133.

See also

  • Related item: Daniel Schmidl, Claudia Czado, Sabine Hug, Fabian J. Theis. A Vine-copula Based Adaptive MCMC Sampler for Efficient Inference of Dynamical Systems. Bayesian Anal., Vol. 8, Iss. 1 (2013) 1–22.