Bayesian Analysis

Inferring particle distribution in a proton accelerator experiment

David M. Higdon, Herbert K. H. Lee, Bruno Sansó, and Weining Zhou

Full-text: Open access


A beam of protons is produced by a linear charged particle accelerator, then focused through the use of successive quadrupoles. The initial state of the beam is unknown, in terms of particle position and momentum. Wire scans provide the only available data on the current state of the beam as it passes through and beyond the focusing region; the goal is to infer the initial state from these position histograms. This setup is that of an inverse problem, in which a computer simulator is used to link an initial state configuration to observable values (wire scans), and then inference is performed for the distribution of the initial state. Our Bayesian approach allows estimation of uncertainty in our initial distributions and beam predictions.

Article information

Bayesian Anal., Volume 1, Number 2 (2006), 249-264.

First available in Project Euclid: 22 June 2012

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

computer simulator inverse problem exponentially-dampened cosine correlation


Lee, Herbert K. H.; Sansó, Bruno; Zhou, Weining; Higdon, David M. Inferring particle distribution in a proton accelerator experiment. Bayesian Anal. 1 (2006), no. 2, 249--264. doi:10.1214/06-BA108.

Export citation


  • Allen, C. K., Chan, K. C. D., Colestock, P. L., Crandall, K. R., Garnett, R. W., Gilpatrick, J. D., Lysenko, W., Qiang, J., Schneider, J. D., Schulze, M. E., Sheffield, R. L., Smith, H. V., and Wangler, T. P. (2002). "Beam-halo measurements in high-current proton beams." Physical Review Letters, 89(214802).
  • Allen, C. K. and Pattengale, N. D. (2002). "Theory and technique of beam envelope simulation: Simulation of bunched particle beams with ellipsoidal symmetry and linear space charge forces." Technical Report LA-UR-02-4979, Los Alamos National Laboratory.
  • Craig, P. S., Goldstein, M., Seheult, A. H., and Smith, J. A. (1996). "Bayes Linear Strategies for History Matching of Hydrocarbon Reservoirs." In Bernardo, J. M., Berger, J. O., Dawid, A. P., and Smith, A. F. M. (eds.), Bayesian Statistics 5, 69–95. Oxford: Clarendon Press.
  • Dragt, A., Neri, F., Rangarjan, G., Douglas, D., Healy, L., and Ryne, R. (1988). "Lie Algebraic Treatment of Linear and Nonlinear Beam Dynamics." Annual Review of Nuclear and Particle Science, 38: 455–496.
  • Gamerman, D. (1997). Markov Chain Monte Carlo. London, UK: Chapman and Hall.
  • Kennedy, M. C. and O'Hagan, A. (2001). "Bayesian Calibration of Computer Models." Journal of the Royal Statistical Society, Series B, 63: 425–464.
  • Lee, H., Higdon, D., Bi, Z., Ferreira, M., and West, M. (2002). "Markov Random Field Models for High-Dimensional Parameters in Simulations of Fluid Flow in Porous Media." Technometrics, 44: 230–241.
  • O'Hagan, A., Kennedy, M. C., and Oakley, J. E. (1999). "Uncertainty Analysis and other Inference Tools for Complex Computer Codes." In Bernardo, J. M., Berger, J. O., Dawid, A. P., and Smith, A. F. M. (eds.), Bayesian Statistics 6, 503–524. Oxford University Press.
  • Oliver, D. S., Cunha, L. B., and Reynolds, A. C. (1997). "Markov Chain Monte Carlo Methods for Conditioning a Permeability Field to Pressure Data." Mathematical Geology, 29(1): 61–91.
  • Qiang, J., Ryne, R. D., Habib, S., and Decyk, V. (2000). "An Object-Oriented Parallel Particle-In-Cell Code for Beam Dynamics Simulation in Linear Accelerators." Journal of Computational Physics, 163: 434–451.
  • Yaglom, A. (1986). Correlation Theory of Stationary and Related Random Functions I: Basic Results. Springer Series in Statistics. New York: Springer-Verlag.
  • Yeh, W. W. (1986). "Review of Parameter Identification in Groundwater Hydrology: the Inverse Problem." Water Resources Research, 22: 95–108.