Bayesian Analysis
- Bayesian Anal.
- Volume 1, Number 3 (2006), 515-534.
Prior distributions for variance parameters in hierarchical models (comment on article by Browne and Draper)
Full-text: Open access
Abstract
Various noninformative prior distributions have been suggested for scale parameters in hierarchical models. We construct a new folded-noncentral-$t$ family of conditionally conjugate priors for hierarchical standard deviation parameters, and then consider noninformative and weakly informative priors in this family. We use an example to illustrate serious problems with the inverse-gamma family of "noninformative" prior distributions. We suggest instead to use a uniform prior on the hierarchical standard deviation, using the half-$t$ family when the number of groups is small and in other settings where a weakly informative prior is desired. We also illustrate the use of the half-$t$ family for hierarchical modeling of multiple variance parameters such as arise in the analysis of variance.
Article information
Source
Bayesian Anal., Volume 1, Number 3 (2006), 515-534.
Dates
First available in Project Euclid: 22 June 2012
Permanent link to this document
https://projecteuclid.org/euclid.ba/1340371048
Digital Object Identifier
doi:10.1214/06-BA117A
Mathematical Reviews number (MathSciNet)
MR2221284
Zentralblatt MATH identifier
1331.62139
Keywords
Bayesian inference conditional conjugacy folded-noncentral-$t$ distribution half-$t$ distribution hierarchical model multilevel model noninformative prior distribution weakly informative prior distribution
Citation
Gelman, Andrew. Prior distributions for variance parameters in hierarchical models (comment on article by Browne and Draper). Bayesian Anal. 1 (2006), no. 3, 515--534. doi:10.1214/06-BA117A. https://projecteuclid.org/euclid.ba/1340371048
References
- Barnard, J., McCulloch, R. E., and Meng, X. L. (2000). "Modeling covariance matrices in terms of standard deviations and correlations, with application to shrinkage." Statistica Sinica, 10: 1281–1311.
- Bayarri, M. J. and Berger, J. (2000). "P-values for composite null models." Journal of the American Statistical Association, 95: 1127–1142. (with discussion).
- Bernardo, J. M. (1979). "Reference posterior distributions for Bayesian inference." Journal of the Royal Statistical Society B, 41: 113–147. (with discussion).
- Bickel, P. and Blackwell, D. (1967). "A note on Bayes estimates." Annals of Mathematical Statistics, 38: 1907–1911. Mathematical Reviews (MathSciNet): MR219175
Zentralblatt MATH: 0155.26103
Digital Object Identifier: doi:10.1214/aoms/1177698625
Project Euclid: euclid.aoms/1177698625 - Box, G. E. P. (1980). "Sampling and Bayes inference in scientific modelling and robustness." Journal of the Royal Statistical Society A, 143: 383–430. Mathematical Reviews (MathSciNet): MR603745
Digital Object Identifier: doi:10.2307/2982063
Zentralblatt MATH: 0471.62036 - Box, G. E. P. and Tiao, G. C. (1973). Bayesian Inference in Statistical Analysis. Reading, Mass.: Addison-Wesley.
- Browne, W. J. and Draper, D. (2005). "A comparison of Bayesian and likelihood-based methods for fitting multilevel models." Bayesian Analysis, This issue. Mathematical Reviews (MathSciNet): MR2221283
Digital Object Identifier: doi:10.1214/06-BA117
Zentralblatt MATH: 1331.62126 - Carlin, B. P. and Louis, T. A. (2001). Bayes and Empirical Bayes Methods for Data Analysis. Chapman and Hall, second edition edition.
- Christiansen, C. and Morris, C. (1997). "Hierarchical Poisson regression models." Journal of the American Statistical Association, 92: 618–632.
- Daniel, C. (1959). "Use of half-normal plots in interpreting factorial two-level experiments." Technometrics, 1: 311–341. Mathematical Reviews (MathSciNet): MR125710
- Daniels, M. J. (1999). "A prior for the variance in hierarchical models." Canadian Journal of Statistics, 27: 569–580. Mathematical Reviews (MathSciNet): MR1745822
Digital Object Identifier: doi:10.2307/3316112
Zentralblatt MATH: 0942.62026 - Daniels, M. J. and Kass, R. E. (1999)). "Nonconjugate Bayesian estimation of covariance matrices and its use in hierarchical models." Journal of the American Statistical Association, 94: 1254–1263.
- –- (2001). "Shrinkage estimators for covariance matrices." Biometrics, 57: 1173–1184. Mathematical Reviews (MathSciNet): MR1950425
Digital Object Identifier: doi:10.1111/j.0006-341X.2001.01173.x
Zentralblatt MATH: 1209.62132 - Efron, B. and Morris, C. (1975). "Data analysis using Stein's estimator and its generalizations." Journal of the American Statistical Association, 70: 311–319.
- Gelfand, A. E. and Smith, A. F. M. (1990). "Sampling-based approaches to calculating marginal densities." Journal of the American Statistical Association, 85: 398–409.
- Gelman, A. (2003). "Bugs.R: functions for calling Bugs from R." http://www.stat.columbia.edu/$\sim$gelman/bugsR/.
- –- (2004). "Parameterization and Bayesian modeling." Journal of the American Statistical Association, 99: 537 – 545. Mathematical Reviews (MathSciNet): MR2109315
Zentralblatt MATH: 1117.62343
Digital Object Identifier: doi:10.1198/016214504000000458 - –- (2005). "Analysis of variance: why it is more important than ever." Annals of Statistics, 33: 1 – 53. With discussion. Mathematical Reviews (MathSciNet): MR2157795
Zentralblatt MATH: 1064.62082
Digital Object Identifier: doi:10.1214/009053604000001048
Project Euclid: euclid.aos/1112967698 - Gelman, A., Carlin, J. B., Stern, H. S., and Rubin, D. B. (2003). Bayesian Data Analysis. London: Chapman and Hall, second edition edition. Mathematical Reviews (MathSciNet): MR1385925
- Gelman, A., Huang, Z., van Dyk, D., and Boscardin, W. J. (2005). "Transformed and parameter-expanded Gibbs samplers for multilevel linear and generalized linear models." Technical report, Department of Statistics, Columbia University.
- Gelman, A., Meng, X. L., and Stern, H. S. (1996). "Posterior predictive assessment of model fitness via realized discrepancies." Statistica Sinica, 6: 733–807. (with discussion).
- Hill, B. M. (1965). "Inference about variance components in the one-way model." Journal of the American Statistical Association, 60: 806–825.
- James, W. and Stein, C. (1960). "Estimation with quadratic loss." In Neyman, J. (ed.), Proceedings of the Fourth Berkeley Symposium, volume 1, 361–380. Berkeley: University of California Press.
- Jaynes, E. T. (1983). Papers on Probability, Statistics, and Statistical Physics. Dordrecht, Netherlands: Reidel.
- Jeffreys, H. (1961). Theory of Probability. Oxford University Press, third edition edition.
- Johnson, N. L. and Kotz, S. (1972). Distributions in Statistics. New York: Wiley. 4 vols.
- Kass, R. E. and Raftery, A. E. (1995). "Bayes factors and model uncertainty." Journal of the American Statistical Association, 90: 773–795. Mathematical Reviews (MathSciNet): MR3363402
Zentralblatt MATH: 0846.62028
Digital Object Identifier: doi:10.1080/01621459.1995.10476572 - Kass, R. E. and Wasserman, L. (1996). "The selection of prior distributions by formal rules." Journal of the American Statistical Association, 91: 1343–1370.
- Kreft, I. and De Leeuw, J. (1998). Introducing Multilevel Modeling. Sage.
- Liu, C. (2001). "Bayesian analysis of multivariate probit models. Discussion of “The art of data augmentation” by D. A. van Dyk and X. L. Meng." Journal of Computational and Graphical Statistics, 10: 75–81.
- Liu, C., Rubin, D. B., and Wu, Y. N. (1998). "Parameter expansion to accelerate EM: the PX-EM algorithm." Biometrika, 85: 755–770. Mathematical Reviews (MathSciNet): MR1666758
Zentralblatt MATH: 0921.62071
Digital Object Identifier: doi:10.1093/biomet/85.4.755 - Liu, J. and Wu, Y. N. (1999). "Parameter expansion for data augmentation." Journal of the American Statistical Association, 94: 1264–1274.
- Meng, X. L. and Zaslavsky, A. M. (2002). "Single observation unbiased priors." Annals of Statistics, 30: 1345–1375. Mathematical Reviews (MathSciNet): MR1936322
Zentralblatt MATH: 1019.62024
Digital Object Identifier: doi:10.1214/aos/1035844979
Project Euclid: euclid.aos/1035844979 - Morris, C. (1983). "Parametric empirical Bayes inference: theory and applications (with discussion)." Journal of the American Statistical Association, 78: 47–65.
- Natarajan, R. and Kass, R. E. (2000). "Reference Bayesian methods for generalized linear mixed models." Journal of the American Statistical Association, 95: 227–237.
- O'Hagan, A. (1995). "Fractional Bayes factors for model comparison (with discussion)." Journal of the Royal Statistical Society B, 57: 99–138. Mathematical Reviews (MathSciNet): MR1325379
- Pauler, D. K., Wakefield, J. C., and Kass, R. E. (1999). "Bayes factors for variance component models." Journal of the American Statistical Association, 94: 1242–1253.
- Portnoy, S. (1971). "Formal Bayes estimation with applications to a random effects model." Annals of Mathematical Statistics, 42: 1379–1402. Mathematical Reviews (MathSciNet): MR323016
Zentralblatt MATH: 0223.62016
Digital Object Identifier: doi:10.1214/aoms/1177693250
Project Euclid: euclid.aoms/1177693250 - R Development Core Team (2003). "R: a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing." http://www.r-project.org.
- Raudenbush, S. W. and Bryk, A. S. (2002). Hierarchical Linear Models. Thousand Oaks, Calif.: Sage., second edition. Zentralblatt MATH: 1137.62037
- Rubin, D. B. (1981). "Estimation in parallel randomized experiments." Journal of Educational Statistics, 6: 377–401.
- Sargent, D. J. and Hodges, J. S. (1997). "Smoothed ANOVA with application to subgroup analysis." Technical report, Department of Biostatistics, University of Minnesota.
- Savage, L. J. (1954). The Foundations of Statistics. New York: Dover.
- Snijders, T. A. B. and Bosker, R. J. (1999). Multilevel Analysis. London: Sage. Zentralblatt MATH: 0953.62127
- Spiegelhalter, D. J., Abrams, K. R., and Myles, J. P. (2004). Bayesian Approaches to Clinical Trials and Health-Care Evaluation, chapter section 5.7.3. Chichester: Wiley.
- Spiegelhalter, D. J., Thomas, A., Best, N. G., Gilks, W. R., and Lunn, D. (1994, 2003). "BUGS: Bayesian inference using Gibbs sampling." MRC Biostatistics Unit, Cambridge, England,http://www.mrc-bsu.cam.ac.uk/bugs/.
- Stein, C. (1955). "Inadmissibility of the usual estimator for the mean of a multivariate normal distribution." In Neyman, J. (ed.), Proceedings of the Third Berkeley Symposium, volume 1, 197–206. Berkeley: University of California Press.
- Stone, M. and Springer, B. G. F. (1965). "A paradox involving quasi-prior distributions." Biometrika, 52: 623–627.
- Tiao, G. C. and Tan, W. Y. (1965). "Bayesian analysis of random-effect models in the analysis of variance. I: Posterior distribution of variance components." Biometrika, 52: 37–53.
- van Dyk, D. A. and Meng, X. L. (2001). "The art of data augmentation (with discussion)." Journal of Computational and Graphical Statistics, 10: 1–111. Mathematical Reviews (MathSciNet): MR1936358
Digital Object Identifier: doi:10.1198/10618600152418584
See also
- Related item: William J. Brown, David Draper. A comparison of Bayesian and likelihood-based methods for fitting multilevel
models. Bayesian Anal., Vol. 1, Iss. 3 (2006), 473-514.Project Euclid: euclid.ba/1340371047

- You have access to this content.
- You have partial access to this content.
- You do not have access to this content.
More like this
- The Matrix-F Prior for Estimating and Testing Covariance Matrices
Mulder, Joris and Pericchi, Luis Raúl, Bayesian Analysis, 2018 - On the Half-Cauchy Prior for a Global Scale Parameter
Polson, Nicholas G. and Scott, James G., Bayesian Analysis, 2012 - Scale-Dependent Priors for Variance Parameters in Structured Additive Distributional Regression
Klein, Nadja and Kneib, Thomas, Bayesian Analysis, 2016
- The Matrix-F Prior for Estimating and Testing Covariance Matrices
Mulder, Joris and Pericchi, Luis Raúl, Bayesian Analysis, 2018 - On the Half-Cauchy Prior for a Global Scale Parameter
Polson, Nicholas G. and Scott, James G., Bayesian Analysis, 2012 - Scale-Dependent Priors for Variance Parameters in Structured Additive Distributional Regression
Klein, Nadja and Kneib, Thomas, Bayesian Analysis, 2016 - Simple Marginally Noninformative Prior Distributions for Covariance Matrices
Huang, Alan and Wand, M. P., Bayesian Analysis, 2013 - Single observation unbiased priors
Meng, Xiao-Li and Zaslavsky, Alan M., Annals of Statistics, 2002 - A conjugate prior for discrete hierarchical log-linear models
Massam, Hélène, Liu, Jinnan, and Dobra, Adrian, Annals of Statistics, 2009 - Neutral noninformative and informative conjugate beta and gamma prior distributions
Kerman, Jouni, Electronic Journal of Statistics, 2011 - Bayes Factor Testing of Multiple Intraclass Correlations
Mulder, Joris and Fox, Jean-Paul, Bayesian Analysis, 2019 - The Scaled Beta2 Distribution as a Robust Prior for Scales
Pérez, María-Eglée, Pericchi, Luis Raúl, and Ramírez, Isabel Cristina, Bayesian Analysis, 2017 - Using Prior Expansions for Prior-Data Conflict Checking
Nott, David J., Seah, Max, Al-Labadi, Luai, Evans, Michael, Ng, Hui Khoon, and Englert, Berthold-Georg, Bayesian Analysis, 2020
