Bayesian Analysis

Bayesian inference for the {MAPK}/{ERK} pathway by considering the dependency of the kinetic parameters

Vilda Purutçuoğlu and Ernst Wit

Full-text: Open access


The MAPK/ERK pathway is one of the major signal transduction systems which regulates the cellular growth control of all eukaryotes like the cell proliferation and the apoptosis. Because of its importance in cellular lifecycle, it has been studied intensively, resulting in a number of qualitative descriptions of this regulatory mechanism. In this study we describe the MAPK/ERK pathway as an explicit set of reactions by combining different sources. Our reaction set takes into account the localization and different binding sites of the molecules in the cell by implementing the multiple parametrization. Then we estimate the model parameters of the network in a Bayesian setting via MCMC and data augmentation schemes. In the estimation we apply the Euler approximation, which is the discretized version of the diffusion technique. Additionally in inference of such a realistic and complex system we consider all possible kinds of dependencies coming from distinct stages of updates. To test the inference method we use the simulated data generated by the Gillespie algorithm. From the analysis it is clear that the sampler mixes well and partially is able to identify the dynamics of the MAPK/ERK pathway.

Article information

Bayesian Anal., Volume 3, Number 4 (2008), 851-886.

First available in Project Euclid: 22 June 2012

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

MCMC MAPK/ERK pathway diffusion approximation data augmentation dependency in diffusion matrix


Purutçuoğlu, Vilda; Wit, Ernst. Bayesian inference for the {MAPK}/{ERK} pathway by considering the dependency of the kinetic parameters. Bayesian Anal. 3 (2008), no. 4, 851--886. doi:10.1214/08-BA332.

Export citation


  • Bower, J. M. and Bolouri, H. (2001). Computational Modelling of Genetic and Biochemical Networks. Massachusetts Institute of Technology, second edition.
  • Brent, R. (2004). "A partnership between biology and engineering." Nature Biotechnology, 22: 469–482.
  • –- (2005). "A fishing buddy for hypothesis generators." Science, 308: 504–506.
  • Cao, Y., Gillespie, D. T., and Petzold, L. R. (2005). "Avoiding negative populations in explicit Poisson tau-leaping." Journal of Chemical Physics, 123: 054104.1–054104.8.
  • Carlin, B. P. and Louis, T. A. (2000). Bayes and Empirical Bayes Methods for Data Analysis. Chapman and Hall/CRC, second edition.
  • Chang, L. and Karin, M. (2001). "Mammalian $\mbox{MAP}$ kinase signalling cascades." Nature, 410(6824): 37–40.
  • Endy, D. and Brent, R. (2001). "Modelling cellular behaviour." Nature, 409: 391–395.
  • Eraker, B. (2001). "$\mbox{MCMC}$ analysis of diffusion models with application to finance." Journal of Business and Economic Statistics, 19(2): 177–191.
  • Gamerman, D. and Lopes, H. F. (2006). Markov Chain Monte Carlo: Stochastic Simulation for Bayesian Inference. Chapman and Hall/CRC.
  • Gelman, A., Carlin, J. B., Stern, H. S., and Rubin, D. B. (2004). Bayesian Data Analysis. Chapman and Hall/CRC.
  • Gibson, M. A. and Bruck, J. (2000). "Efficient exact stochastic simulation of chemical systems with many species and many channels." Journal of Physical Chemistry, A(104): 1876–1889.
  • Gillespie, D. T. (1977). "Exact stochastic simulation of coupled chemical reactions." Journal of Physical Chemistry, 81(25): 2340–2361.
  • –- (1992). "A rigorous derivation of the chemical master equation." Physica A, 188: 404–425.
  • –- (1996). "The multivariate Langevin and Fokker-Planck equations." American Journal of Physics, 64(10): 1246–1257.
  • –- (2000). "The chemical Langevin equation." Journal of Chemical Physics, 113: 297–306.
  • –- (2001). "Approximate accelerated stochastic simulation of chemically reacting systems." Journal of Chemical Physics, 115: 1716–1733.
  • Golightly, A. and Wilkinson, D. J. (2005). "Bayesian inference for stochastic kinetic models using a diffusion approximation." Biometrics, 61(3): 781–788.
  • –- (2006). "Bayesian sequential inference for nonlinear multivariate diffusions." Statistics and Computing, 16: 323–338.
  • –- (2006). "Bayesian sequential inference for stochastic kinetic biochemical network models." Journal of Computational Biology, 13(3): 838–851.
  • –- (2008). "Bayesian inference for nonlinear multivariate diffusion models observed with error." Computational Statistics and Data Analysis, 52(3): 1674–1693.
  • Hornberg, J. J. (2005). "Towards integrative tumor cell biology control of $\mbox{MAP}$ kinase signalling." Ph.D. thesis, Vrije Universiteit, Amsterdam.
  • Kampen, N. G. V. (1981). Stochastic Processes in Physics and Chemistry. Amsterdam: North-Holland.
  • Kolch, W. (2000). "Meaningful relationships: the regulation of the $\mbox{Ras/Raf/MEK/ERK}$ pathway by protein interactions." Biochemical Journal, 351: 289–305.
  • Kolch, W., Calder, M., and Gilbert, D. (2005). "When kinases meet mathematics: the systems biology of $\mbox{MAPK}$ signalling." FEBS Letters, 579: 1891–1895.
  • Lawrence, E. (2005). Henderson's Dictionary of Biology. Pearson Prentice Hall.
  • Morton-Firth, C. and Bray, D. (1998). "Predicting temporal fluctuations in an signalling pathway." Journal of Theoretical Biology, 192: 117–128.
  • Orton, R., Sturm, O. E., Vyshemirsky, V., Calder, M., Gilbert, D. R., and Kolch, W. (2005). "Computational modelling of the receptor-tyrosine-kinase-activated $\mbox{MAPK}$ pathway." Biochemical Journal, 392: 249–261.
  • Purutçuoğlu, V. and Wit, E. (2006). "Exact and approximate stochastic simulations of the $\mbox{MAPK}$ pathway and comparisons of simulations' results." Journal of Integrative Bioinformatics, 3(2).
  • –- (2008). "Inclusion of convoluted measurements in $\mbox{Bayesian}$ inference of the $\mbox{MAPK/ERK}$ pathway via multivariate diffusion model." In Sezerman, U. (ed.), Proceeding of the Third International Symposium on Health, Informatics and Bioinformatics. $\mbox{Sabanc{\i}}$ University, $\mbox{\.{I}stanbul}$, Turkey, 18-20 $\mbox{May}$, 2008. $\mbox{CD-Rom}$.
  • Risken, H. (1984). The Fokker-Planck Equation: Methods of Solution and Applications. Springer-Verlag.
  • Roberts, G. O. and Stramer, O. (2001). "On inference for partially observed nonlinear diffusion models using the $\mbox{Metropolis-Hastings}$ algorithm." Biometrika, 88(3): 603–621.
  • Schoeberl, B., Eichler-Jonsson, C., Gilles, E. D., and Müller, G. (2002). "Computational modelling of the dynamics of the $\mbox{MAP}$ kinase cascade activated by surface and internalized $\mbox{EGF}$ receptors." Nature Technology, 20: 370–375.
  • Tian, T. and Burrage, K. (2004). "Binomial leap methods for simulating stochastic chemical kinetics." Journal of Chemical Physics, 121(21): 10356–10364.
  • Turner, T. E., Schnell, S., and Burrage, K. (2004). "Stochastic approaches for modelling in vivo reactions." Computational Biology and Chemistry, 28: 165–178.
  • Vyshemirsky, V., M.Girolami, Gormand, A., and Kolch, W. (2006). "A $\mbox{Bayesian}$ analysis of the $\mbox{ERK}$ signalling pathway." DCS Technical Report Series TR-2006-227, Department of Computing Science, University of Glasgow.
  • Wilkinson, D. J. (2006). Stochastic Modelling for Systems Biology. Chapman and Hall/CRC.
  • Wit, E. and McClure, J. (2004). Statistics for Microarrays: Design, Analysis and Inference. John Wiley and Sons.
  • Yeung, K., Janosch, P., McFerran, B., Rose, D. W., Mischak, H., Sedivy, J. M., and Kolch, W. (2000). "Mechanism of suppression of the $\mbox{Raf/MEK}$/Extracellular signal-regulated kinase pathway by the $\mbox{Raf}$ Kinase inhibitor protein." Molecular and Cellular Biology, 20(9): 3079–3085.
  • Yeung, K., Seitz, T., Li, S., Janosch, P., McFerran, B., Kaiser, C., Fee, F., Katsanakis, K. D., Rose, D. W., Mischak, H., Sedivy, J. M., and Kolch, W. (1999). "Suppression of $\mbox{Raf-1}$ kinase activity and $\mbox{MAP}$ kinase signalling by $\mbox{RKIP}$." Nature, 401: 173–177.