Bayesian Analysis

Comment on article by Rydén

Sergey Kirshner and Padhraic Smyth

Full-text: Open access

Article information

Bayesian Anal., Volume 3, Number 4 (2008), 699-705.

First available in Project Euclid: 22 June 2012

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier


Smyth, Padhraic; Kirshner, Sergey. Comment on article by Rydén. Bayesian Anal. 3 (2008), no. 4, 699--705. doi:10.1214/08-BA326B.

Export citation


  • Baum, L. E., Petrie, T., Soules, G., and Weiss, N. (1970). "A Maximization Technique Occurring in Statistical Analysis of Probabilistic Functions of Markov Chains." Annals of Mathematic Statistics, 41(1): 164–171.
  • Bilmes, J. A. (2004). "Graphical models and automatic speech recognition." In Johnson, M., Khudanpur, S., Ostendorf, M., and Rosenfeld, R. (eds.), Mathematical Foundations of Speech and Language Processing, volume 138 of The IMA Volumes in Mathematics and its Applications, 191–246. New York: Springer.
  • Buntine, W. (1994). "Operations for learning with graphical models." Journal of Artificial Intelligence Research, 2: 159–225.
  • Geman, S. and Geman, D. (1984). "Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images." IEEE Transactions on Pattern Analysis and Machine Intelligence, 6(6): 721–741.
  • Ghahramani, Z. and Jordan, M. I. (1997). "Factorial hidden Markov models." Machine Learning, 29: 245–273.
  • Griffiths, T. L., Steyvers, M., Blei, D. M., and Tenenbaum, J. B. (2005). "Integrating Topics and Syntax." In Saul, L. K., Weiss, Y., and Bottou, L. (eds.), Advances in Neural Information Processing Systems 17, 537–544. Cambridge, MA: MIT Press.
  • Heckerman, D., Geiger, D., and Chickering, D. M. (1995). "Learning Bayesian networks: The combination of knowledge and statistical data." Machine Learning, 20(3): 197–243.
  • Ihler, A., Hutchins, J., and Smyth, P. (2007). "Learning to detect events with Markov-modulated Poisson processes." ACM Transactions on Knowledge Discovery from Data, 1(3).
  • Jordan, M. I. (ed.) (1998). Learning in Graphical Models. Cambridge, MA: MIT Press.
  • Lafferty, J. and Pereira, F. (2001). "Conditional random fields: Probabilistic models for segmenting and labeling sequence data." In International Conference on Machine Learning (ICML 2001), 282–289. Morgan Kaufmann.
  • Lauritzen, S. L. and Spiegelhalter, D. J. (1988). "Local computations with probabilities on graphical structures and their application to expert systems (with discussion)." Journal of the Royal Statistical Society, Series B, 50(2): 157–224.
  • Mackay, D. J. C. (1992). "A practical Bayesian framework for backpropagation networks." Neural Computation, 4: 448–472.
  • McCallum, A., Nigam, K., Rennie, J., and Seymore, K. (2000). "Automating the construction of internet portals with machine learning." Information Retrieval, 3: 127–163.
  • Murphy, K. P. (2002). "Dynamic Bayesian Networks: Representation, Inference and Learning." Ph.D. thesis, Department of Electrical Engineering and Computer Science, UC Berkeley.
  • Neal, R. M. (1996). Bayesian Learning for Neural Networks. New York: Springer.
  • Oliver, N., Rosario, B., and Pentland, A. (2000). "A Bayesian computer vision system for modeling human interactions." IEEE Transactions on Pattern Analysis and Machine Intelligence, 22: 831–843.
  • Pearl, J. (1988). Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. Morgan Kaufmann.
  • Rabiner, L. R. (1989). "A tutorial on hidden Markov models and selected applications in speech recognition." Proceedings of the IEEE, 77: 257–286.
  • Robertson, A. W., Kirshner, S., and Smyth, P. (2004). "Downscaling of daily rainfall occurrence over northeast Brazil" using a hidden Markov model. Journal of Climate, 17(22): 4407–4424.
  • Smyth, P., Heckerman, D., and Jordan, M. (1997). "Probabilistic independence networks for hidden Markov probability models." Neural Computation, 9: 227–269.
  • Thrun, S., Burgard, W., and Fox, D. (1998). "A probabilistic approach to concurrent mapping and localization for mobile robots." Machine Learning, 31(1–3): 29–53.
  • Wilson, A. D. and Bobick, A. F. (1999). "Parametric hidden Markov models for gesture recognition." IEEE Transactions on Pattern Analysis and Machine Intelligence, 21: 884–900.
  • Xing, E. P. and Sohn, K.-A. (2007). "Hidden Markov" Dirichlet process: Modeling genetic inference in open ancestral space. Bayesian Analysis, 2(3): 501–528.

See also

  • Related item: Tobias Rydén. EM versus Markov chain Monte Carlo for estimation of hidden Markov models: a computational perspective. Bayesian Anal., Vol. 3, Iss. 4 (2008), 659-688.