Bayesian Analysis

Galaxy formation: a Bayesian uncertainty analysis

Richard G. Bower, Michael Goldstein, and Ian Vernon

Full-text: Open access

Abstract

In many scientific disciplines complex computer models are used to understand the behaviour of large scale physical systems. An uncertainty analysis of such a computer model known as Galform is presented. Galform models the creation and evolution of approximately one million galaxies from the beginning of the Universe until the current day, and is regarded as a state-of-the-art model within the cosmology community. It requires the specification of many input parameters in order to run the simulation, takes significant time to run, and provides various outputs that can be compared with real world data. A Bayes Linear approach is presented in order to identify the subset of the input space that could give rise to acceptable matches between model output and measured data. This approach takes account of the major sources of uncertainty in a consistent and unified manner, including input parameter uncertainty, function uncertainty, observational error, forcing function uncertainty and structural uncertainty. The approach is known as History Matching, and involves the use of an iterative succession of emulators (stochastic belief specifications detailing beliefs about the Galform function), which are used to cut down the input parameter space. The analysis was successful in producing a large collection of model evaluations that exhibit good fits to the observed data.

Article information

Source
Bayesian Anal. Volume 5, Number 4 (2010), 619-669.

Dates
First available in Project Euclid: 19 June 2012

Permanent link to this document
https://projecteuclid.org/euclid.ba/1340110846

Digital Object Identifier
doi:10.1214/10-BA524

Mathematical Reviews number (MathSciNet)
MR2740148

Zentralblatt MATH identifier
1330.85005

Keywords
Computer models uncertainty analysis model discrepancy history matching Bayes linear analysis galaxy formation galform

Citation

Vernon, Ian; Goldstein, Michael; Bower, Richard G. Galaxy formation: a Bayesian uncertainty analysis. Bayesian Anal. 5 (2010), no. 4, 619--669. doi:10.1214/10-BA524. https://projecteuclid.org/euclid.ba/1340110846.


Export citation

References

  • Bastos, T. S. and O'Hagan, A. (2008). "Diagnostics for Gaussian process emulators." Technometrics, 51: 425–438.
  • Baugh, C. M. (2006). "A primer on hierarchical galaxy formation: the semi- analytical approach"." Rept. Prog. Phys., 69: 3101–3156.
  • Bower, R. G., Benson, A. J., et al. (2006). "The broken hierarchy of galaxy formation." Mon.Not.Roy.Astron.Soc., 370: 645–655.
  • Bower, R. G., Vernon, I., Goldstein, M., et al. (2010). "The Parameter Space of Galaxy Formation." Mon.Not.Roy.Astron.Soc., 407: 2017–2045.
  • Cole, S. et al. (2001). "The 2dF Galaxy Redshift Survey: Near Infrared Galaxy Luminosity Functions"." Mon. Not. Roy. Astron. Soc., 326: 255–273.
  • Colless, M. et al. (2001). "The 2dF Galaxy Redshift Survey: Spectra and redshifts." Mon.Not.Roy.Astron.Soc., 328: 1039–1066.
  • Conti, S., Gosling, J. P., Oakley, J. E., and O'Hagan, A. (2009). "Gaussian process emulation of dynamic computer codes." Biometrika, 96: 663–676.
  • Craig, P. S., Goldstein, M., Seheult, A. H., and Smith, J. A. (1996). "Bayes linear strategies for history matching of hydrocarbon reservoirs." In Bernardo, J. M., Berger, J. O., Dawid, A. P., and Smith, A. F. M. (eds.), Bayesian Statistics 5, 69–95. Oxford, UK: Clarendon Press.
  • –- (1997). "Pressure matching for hydrocarbon reservoirs: a case study in the use of Bayes linear strategies for large computer experiments." In Gatsonis, C., Hodges, J. S., Kass, R. E., McCulloch, R., Rossi, P., and Singpurwalla, N. D. (eds.), Case Studies in Bayesian Statistics, volume 3, 36–93. New York: Springer-Verlag.
  • Cressie, N. (1991). Statistics for Spatial Data. New York: Wiley.
  • Cumming, J. A. and Goldstein, M. (2009). "Bayes linear uncertainty analysis for oil reservoirs based on multiscale computer experiments." In O'Hagan, A. and West, M. (eds.), Handbook of Bayesian Analysis. Oxford, UK: Oxford University Press.
  • Currin, C., Mitchell, T., Morris, M., and Ylvisaker, D. (1991). "Bayesian prediction of deterministic functions with applications to the design and analysis of computer experiments." Journal of the American Statistical Association, 86(416): 953–963.
  • De Finetti, B. (1974). Theory of Probability, volume 1. London: Wiley.
  • –- (1975). Theory of Probability, volume 2. London: Wiley.
  • Goldstein, M. (1999). "Bayes linear analysis." In Kotz, S. et al. (eds.), Encyclopaedia of Statistical Sciences, 29–34. Chichester: Wiley.
  • –- (2006). "Subjective Bayesian Analysis: Principles and Practice." Bayesian Analysis, 1(3): 403–420.
  • –- (2010). "External Bayesian analysis for computer simulators." In Bernardo, J. M., Bayarri, M. J., Berger, J. O., Dawid, A. P., Heckerman, D., Smith, A. F. M., and West, M. (eds.), To appear in Bayesian Statistics 9. Oxford University Press.
  • Goldstein, M. and Rougier, J. C. (2006). "Bayes linear calibrated prediction for complex systems." Journal of the American Statistical Association, 101(475): 1132–1143.
  • –- (2009). "Reified Bayesian modelling and inference for physical systems (with Discussion)." Journal of Statistical Planning and Inference, 139(3): 1221–1239.
  • Goldstein, M. and Wooff, D. A. (2007). Bayes Linear Statistics: Theory and Methods. Chichester: Wiley.
  • Heitmann, K., Higdon, D., et al. (2009). "The Coyote Universe II: Cosmological Models and Precision Emulation of the Nonlinear Matter Power Spectrum." Astrophys. J., 705(1): 156–174.
  • Higdon, D., Gattiker, J., Williams, B., and Rightley, M. (2008). "Computer Model Calibration Using High-Dimensional Output." Journal of the American Statistical Association, 103(482): 570–583.
  • Higdon, D., Kennedy, M., Cavendish, J. C., Cafeo, J. A., and Ryne, R. D. (2004). "Combining field data and computer simulations for calibration and prediction." SIAM Journal on Scientific Computing, 26(2): 448–466.
  • House, L., Goldstein, M., and Vernon, I. (2009). "Exchangeable Computer Models." MUCM Technical Report 10/01, submitted to Journal of the Royal Statistical Society, Series B.
  • Kennedy, M. C. and O'Hagan, A. (2001). "Bayesian calibration of computer models." Journal of the Royal Statistical Society, Series B, 63(3): 425–464.
  • Norberg, P., Cole, S., et al. (2002). "The 2dF Galaxy Redshift Survey: The $b_J$-band galaxy luminosity function and survey selection function." Mon.Not.Roy.Astron.Soc., 336: 907–934.
  • Oakley, J. and O'Hagan, A. (2002). "Bayesian inference for the uncertainty distribution of computer model outputs." Biometrika, 89(4): 769–784.
  • O'Hagan, A. (2006). "Bayesian analysis of computer code outputs: A tutorial." Reliability Engineering and System Safety, 91: 1290–1300.
  • Pukelsheim, F. (1994). "The three sigma rule." The American Statistician, 48: 88–91.
  • Raftery, A. E., Givens, G. H., and Zeh, J. E. (1995). "Inference from a deterministic population dynamics model for bowhead whales (with Discussion)." Journal of the American Statistical Association, 90: 402–430.
  • Rougier, J. C. (2008). "Efficient emulators for multivariate deterministic functions." Journal of Computational and Graphical Statistics, 17(4): 827–843.
  • Sacks, J., Welch, W. J., Mitchell, T. J., and Wynn, H. P. (1989). "Design and analysis of computer experiments." Statistical Science, 4(4): 409–435.
  • Santner, T. J., Williams, B. J., and Notz, W. I. (2003). The Design and Analysis of Computer Experiments. New York: Springer-Verlag.
  • Spergel, D. N. et al. (2003). "First Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Determination of Cosmological Parameters"." Astrophys. J. Suppl., 148: 175–194.
  • Springel, V. et al. (2005). "Simulating the joint evolution of quasars, galaxies and their large-scale distribution"." Nature, 435: 629–636.
  • Vernon, I. and Goldstein, M. (2009). "Bayes Linear Analysis of Imprecision in Computer Models, with Application to Understanding Galaxy Formation." In Augustin, T., Coolen, F. P. A., Moral, S., and Troffaes, M. C. M. (eds.), ISIPTA'09: Proceedings of the Sixth International Symposium on Imprecise Probability: Theories and Applications, 441–450. Durham, UK: SIPTA.

See also

  • Related item: David Poole. CComment on article by Vernon et al. Bayesian Anal., Vol. 5, Iss. 4 (2010), 671-675.
  • Related item: Pritam Ranjan. Comment on article by Vernon et al. Bayesian Anal., Vol. 5, Iss. 4 (2010), 677-681.
  • Related item: David M. Higdon, Earl Lawrence. Comment on article by Vernon et al. Bayesian Anal., Vol. 5, Iss. 4 (2010), 683-689.
  • Related item: David A. van Dyk. Comment on article by Vernon et al. Bayesian Anal., Vol. 5, Iss. 4 (2010), 691-695.
  • Related item: Ian Vernon, Michael Goldstein, Richard G. Bower. Rejoinder. Bayesian Anal., Vol. 5, Iss. 4(2010), 697-708.