Bayesian Analysis

On the Support of MacEachern’s Dependent Dirichlet Processes and Extensions

Andrés F. Barrientos, Alejandro Jara, and Fernando A. Quintana

Full-text: Open access


We study the support properties of Dirichlet process–based models for sets of predictor–dependent probability distributions. Exploiting the connection between copulas and stochastic processes, we provide an alternative definition of MacEachern’s dependent Dirichlet processes. Based on this definition, we provide sufficient conditions for the full weak support of different versions of the process. In particular, we show that under mild conditions on the copula functions, the version where only the support points or the weights are dependent on predictors have full weak support. In addition, we also characterize the Hellinger and Kullback–Leibler support of mixtures induced by the different versions of the dependent Dirichlet process. A generalization of the results for the general class of dependent stick–breaking processes is also provided.

Article information

Bayesian Anal., Volume 7, Number 2 (2012), 277-310.

First available in Project Euclid: 16 June 2012

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Related probability distributions Bayesian nonparametrics Copulas Weak support Hellinger support Kullback–Leibler support Stick–breaking processes


Barrientos, Andrés F.; Jara, Alejandro; Quintana, Fernando A. On the Support of MacEachern’s Dependent Dirichlet Processes and Extensions. Bayesian Anal. 7 (2012), no. 2, 277--310. doi:10.1214/12-BA709.

Export citation


  • Abramowitz, M. and Stegun, I. A. (1964). Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. New York, USA: Dover.
  • Caron, F., Davy, M., Doucet, A., Duflos, E., and Vanheeghe, P. (2008). “Bayesian inference for linear dynamic models with Dirichlet process mixtures.” IEEE Transactions on Signal Processing, 56: 71–84.
  • Chung, Y. and Dunson, D. B. (2009). “Nonparametric Bayes conditional distribution modeling with variable selection.” Journal of the American Statistical Association, 104: 1646–1660.
  • Cifarelli, D. and Regazzini, E. (1978). “Problemi statistici non parametrici in condizioni di scambiabilità parziale e impiego di medie associative.” Technical report, Quaderni Istituto Matematica Finanziaria, Torino.
  • Darsow, W. F., Nguyen, B., and Olsen, E. T. (1992). “Copulas and Markov processes.” Illinois Journal of Mathematics, 36: 600–642.
  • De Iorio, M., Johnson, W. O., Müller, P., and Rosner, G. L. (2009). “Bayesian nonparametric non-proportional hazards survival modelling.” Biometrics, 65: 762–771.
  • De Iorio, M., Müller, P., Rosner, G. L., and MacEachern, S. N. (2004). “An ANOVA model for dependent random measures.” Journal of the American Statistical Association, 99: 205–215.
  • De la Cruz, R., Quintana, F. A., and Müller, P. (2007). “Semiparametric Bayesian classification with longitudinal markers.” Applied Statistics, 56(2): 119–137.
  • Dunson, D. B. and Herring, A. H. (2006). “Semiparametric Bayesian latent trajectory models.” Technical report, ISDS Discussion Paper 16, Duke University, Durham, NC, USA.
  • Dunson, D. B. and Park, J. H. (2008). “Kernel stick-breaking processes.” Biometrika, 95: 307–323.
  • Dunson, D. B., Pillai, N., and Park, J. H. (2007). “Bayesian density regression.” Journal of the Royal Statistical Society, Series B, 69: 163–183.
  • Epifani, I. and Lijoi, A. (2010). “Nonparametric priors for vectors of survival functions.” Statistica Sinica, 20: 1455–1484.
  • Escobar, M. D. and West, M. (1995). “Bayesian density estimation and inference using mixtures.” Journal of the American Statistical Association, 90: 577–588.
  • Ferguson, T. S. (1973). “A Bayesian analysis of some nonparametric problems.” Annals of Statistics, 1: 209–230.
  • — (1974). “Prior distribution on the spaces of probability measures.” Annals of Statistics, 2: 615–629.
  • — (1983). “Bayesian density estimation by mixtures of normal distributions.” In Siegmund, D., Rustage, J., and Rizvi, G. G. (eds.), Recent Advances in Statistics: Papers in Honor of Herman Chernoff on His Sixtieth Birthday, 287–302. Bibliohound.
  • Gelfand, A. E., Kottas, A., and MacEachern, S. N. (2005). “Bayesian nonparametric spatial modeling with Dirichlet process mixing.” Journal of the American Statistical Association, 100: 1021–1035.
  • Giudici, P., Mezzetti, M., and Muliere, P. (2003). “Mixtures of Dirichlet process priors for variable selection in survival analysis.” Journal of Statistical Planning and Inference, 111: 101–115.
  • Ishwaran, H. and James, L. F. (2001). “Gibbs sampling methods for stick-breaking priors.” Journal of the American Statistical Association, 96: 161–173.
  • Jara, A., Lesaffre, E., De Iorio, M., and Quintana, F. A. (2010). “Bayesian semiparametric inference for multivariate doubly-interval-censored data.” Annals of Applied Statistics, 4: 2126–2149.
  • Joe, H. (1997). Multivariate Models and Dependence Concepts. New York, USA: Chapman and Hall/CRC.
  • Kolmogorov, A. N. (1933). Foundations of the theory of probability. New York, USA: Nathan Morrison, 2nd edition.
  • Leisen, F. and Lijoi, A. (2011). “Vectors of two–parameter Poisson–Dirichlet processes.” Journal of Multivariate Analysis, 102: 482–495.
  • Lijoi, A., Prünster, I., and Walker, S. (2004). “Extending Doob’s consistency theorem to nonparametric densities.” Bernoulli, 10: 651–663.
  • Lo, A. Y. (1984). “On a class of Bayesian nonparametric estimates I: Density estimates.” The Annals of Statistics, 12: 351–357.
  • MacEachern, S. N. (1999). “Dependent nonparametric processes.” In ASA Proceedings of the Section on Bayesian Statistical Science, Alexandria, VA. American Statistical Association.
  • — (2000). “Dependent Dirichlet processes.” Technical report, Department of Statistics, The Ohio State University.
  • Mena, R. H., Ruggiero, M., and Walker, S. G. (2011). “Geometric stick-breaking processes for continuous-time Bayesian nonparametric modeling.” Journal of Statistical Planning and Inference, 141: 3217–3230.
  • Mira, A. and Petrone, S. (1996). “Bayesian hierarchical nonparametric inference for change-point problems.” In Bernardo, J. M., Berger, J. O., Dawid, A. P., and Smith, A. F. M. (eds.), Bayesian Statistics 5. Oxford University Press.
  • Muliere, P. and Petrone, S. (1993). “A Bayesian predictive approach to sequential search for an optimal dose: parametric and nonparametric models.” Journal of the Italian Statistical Society, 2: 349–364.
  • Müller, P., Erkanli, A., and West, M. (1996). “Bayesian curve fitting using multivariate normal mixtures.” Biometrika, 83: 67–79.
  • Müller, P., Rosner, G. L., De Iorio, M., and MacEachern, S. (2005). “A nonparametric Bayesian model for inference in related longitudinal studies.” Journal of the Royal Statistical Society, Series C, 54: 611–626.
  • Norets, A. (2010). “Approximation of conditional densities by smooth mixtures of regressions.” The Annals of Statistics, 38: 1733–1766.
  • Norets, A. and Pelenis, J. (2011). “Posterior consistency in conditional density estimation by covariate dependent mixtures.” Technical report, Princeton University, Economics Department.
  • Parthasarathy, K. R. (1967). Probability Measures in Metric Spaces. Providence, USA: AMS Chelsea Publishing.
  • Pati, D., Dunson, D., and Tokdar, S. (2011). “Posterior consistency in conditional distribution estimation.” Technical report, Duke University, Department of Statistical Science.
  • Pitman, J. and Yor, M. (1997). “The two-parameter Poisson-Dirichlet distribution derived from a stable subordinator.” The Annals of Probability, 25: 855–900.
  • Sethuraman, J. (1994). “A constructive definition of Dirichlet priors.” Statistica Sinica, 2: 639–650.
  • Sklar, A. (1959). “Fonctions de répartition à n dimensions et leurs marges.” Publications de l’Institut de Statistique de L’Université de Paris, 8: 229–231.
  • Wu, Y. and Ghosal, S. (2008). “Kullback Leibler property of kernel mixture priors in Bayesian density estimation.” Electronic Journal of Statistics, 2: 298–331.