Bayesian Analysis

Comment on article by Polson and Scott

Babak Shahbaba, Yaming Yu, and David A. van Dyk

Full-text: Open access

Article information

Source
Bayesian Anal. Volume 6, Number 1 (2011), 31-35.

Dates
First available in Project Euclid: 13 June 2012

Permanent link to this document
https://projecteuclid.org/euclid.ba/1339611938

Digital Object Identifier
doi:10.1214/11-BA601B

Mathematical Reviews number (MathSciNet)
MR2781805

Zentralblatt MATH identifier
1330.62260

Subjects
Primary: 62H30: Classification and discrimination; cluster analysis [See also 68T10, 91C20]
Secondary: 62C10: Bayesian problems; characterization of Bayes procedures 62J07: Ridge regression; shrinkage estimators 65C05: Monte Carlo methods

Citation

Shahbaba, Babak; Yu, Yaming; van Dyk, David A. Comment on article by Polson and Scott. Bayesian Anal. 6 (2011), no. 1, 31--35. doi:10.1214/11-BA601B. https://projecteuclid.org/euclid.ba/1339611938


Export citation

References

  • Andrews, D. F. and Mallows, C. L. (1974). "Scale Mixtures of Normal Distributions"." Journal of the Royal Statistical Society. Series B (Methodological), 36(1): 99–102.
  • Armagan, A. (2009). "Variational Bridge Regression"." In van Dyk, D. and Welling, M. (eds.), The 12th International Conference on Artificial Intelligence and Statistics, 5:17–24. Clearwater Beach, Florida USA: JMLR W&CP.
  • Dempster, A. P., Laird, N. M., and Rubin, D. B. (1977). "Maximum Likelihood from Incomplete Data via the EM Algorithm"." Journal of the Royal Statistical Society. Series B (Methodological), 39(1): 1–38.
  • Frank, I. E. and Friedman, J. H. (1993). "A Statistical View of Some Chemometrics Regression Tools"." Technometrics, 35(2): 109–135.
  • Hans, C. (2009). "Bayesian lasso regression"." Biometrika, 96(4): 835–845.
  • Hoerl, A. E. and Kennard, R. W. (1970). "Ridge regression: Application to nonorthogonal problems"." Technometrics, 12(1): 55–67.
  • Lange, K., Hunter, D., and Yang, I. (2000). "Optimization transfer using surrogate objective functions (with discussion)." Journal of Computational and Graphical Statistics, 9: 1–59.
  • Liu, C., Rubin, D. B., and Wu, Y. N. (1998). "Parameter expansion to accelerate EM – the PX-EM algorithm"." Biometrika, 85(4): 755–770.
  • Liu, J. S. and Wu, Y. N. (1999). "Parameter expansion for data augmentation"." Journal of the American Statistical Association, 94: 1264–1274.
  • Meng, X. L. and van Dyk, D. (1997). "The EM Algorithm–An Old Folk-Song Sung to a Fast New Tune"." Journal of the Royal Statistical Society. Series B (Methodological), 59(3): 511–567.
  • Neal, R. M. (1998). "Regression and classification using Gaussian process priors." Bayesian Statistics, 6: 471–501.
  • –- (2004). "Tutorial on Bayesian Methods for Machine Learning"." http://www.cs.toronto.edu/~radford/ftp/bayes-tut.pdf
  • Park, T. and Casella, G. (2008). "The Bayesian Lasso"." Journal of the American Statistical Association, 103(482): 681–686.
  • Roberts, G. O. and Sahu, S. K. (1997). "Updating Schemes, Correlation Structure, Blocking and Parameterisation for the Gibbs Sampler"." Journal of the Royal Statistical Society, Series B, 59: 291–317.
  • Schlossmacher, E. J. (1973). "An iterative technique for absolute deviations curve fitting"." Journal of American Statistical Association, 68(344): 857–859.
  • Seeger, M., Williams, C. K. I., and Lawrence, N. (2003). "Fast forward selection to speed up sparse Gaussian process regression." In Bishop, C. and Frey, B. J. (eds.), Proceedings of the Ninth International Workshop on Artificial Intelligence and Statistics. Key West, Florida: Society for Artificial Intelligence and Statistics.
  • Tibshirani, R. (1996). "Regression Shrinkage and Selection Via the Lasso." Journal of the Royal Statistical Society, Series B, 58(1): 267–288.
  • van Dyk, D. and Park, T. (2008). Partially collapsed Gibbs samplers: Theory and methods. Journal of the American Statistical Association, 103:790–796.
  • van Dyk, D. A. and Meng, X.-L. (2011). Cross-fertilizing strategies for better EM mountain climbing and DA field exploration: A graphical guide book. Statistical Science, in press.
  • West, M. (1987). "On scale mixtures of normal distributions"." Biometrika, 74(3): 646–648.
  • Yu, Y. and Meng, X. L. (to appear). "To Center or Not to Center, That is Not the Question: An Ancillarity-Sufficiency Interweaving Strategy (ASIS) for Boosting MCMC Efficiency"." Journal of Computational and Graphical Statistics.

See also

  • Related item: Nicholas G. Polson, Steven L. Scott. Data augmentation for support vector machines. Bayesian Anal., Vol. 6, Iss. 1 (2011), 1-23.