Advances in Theoretical and Mathematical Physics

Standard modules, induction and the structure of the Temperley-Lieb algebra

David Ridout and Yvan Saint-Aubin

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Abstract

The basic properties of the Temperley-Lieb algebra $\mathsf{TL}_n$ with parameter $\beta = q + q^{-1} , q \in \mathbb{C} \backslash \{ 0 \}$, are reviewed in a pedagogical way. The link and standard (cell) modules that appear in numerous physical applications are defined and a natural bilinear form on the standard modules is used to characterise their maximal submodules. When this bilinear form has a non-trivial radical, some of the standard modules are reducible and $\mathsf{TL}_n$ is non-semisimple. This happens only when $q$ is a root of unity. Use of restriction and induction allows for a finer description of the structure of the standard modules. Finally, a particular central element $F_n \in \mathsf{TL}_n$ is studied; its action is shown to be non-diagonalisable on certain indecomposable modules and this leads to a proof that the radicals of the standard modules are irreducible.Moreover, the space of homomorphisms between standard modules is completely determined. The principal indecomposable modules are then computed concretely in terms of standard modules and their inductions. Examples are provided throughout and the delicate case $\beta = 0$, that plays an important role in physical models, is studied systematically.

Article information

Source
Adv. Theor. Math. Phys., Volume 18, Number 5 (2014), 957-1041.

Dates
First available in Project Euclid: 25 November 2014

Permanent link to this document
https://projecteuclid.org/euclid.atmp/1416929529

Mathematical Reviews number (MathSciNet)
MR3281274

Zentralblatt MATH identifier
1308.82015

Citation

Ridout, David; Saint-Aubin, Yvan. Standard modules, induction and the structure of the Temperley-Lieb algebra. Adv. Theor. Math. Phys. 18 (2014), no. 5, 957--1041. https://projecteuclid.org/euclid.atmp/1416929529


Export citation