Advances in Theoretical and Mathematical Physics
- Adv. Theor. Math. Phys.
- Volume 17, Number 5 (2013), 1077-1128.
Magic coset decompositions
Sergio L. Cacciatori, Bianca L. Cerchiai, and Alessio Marrani
Abstract
By exploiting a "mixed" non-symmetric Freudenthal-Rozenfeld-Tits magic square, two types of coset decompositions are analyzed for the non-compact special Kähler symmetric rank-3 coset $E_{7(-25)}/ [(E_{6(-78)} \times U(1)) / \mathbb{Z}_3]$, occurring in supergravity as the vector multiplets'scalar manifold in $\mathcal{N} = 2, \mathcal{D} = 4$ exceptional Maxwell-Einstein theory. The first decomposition exhibits maximal manifest covariance, whereas the second (triality-symmetric) one is of Iwasawa type, with maximal $SO(8)$ covariance. Generalizations to conformal non-compact, real forms of nondegenerate, simple groups "of type E7" are presented for both classes of coset parametrizations, and relations to rank-3 simple Euclidean Jordan algebras and normed trialities over division algebras are also discussed.
Article information
Source
Adv. Theor. Math. Phys., Volume 17, Number 5 (2013), 1077-1128.
Dates
First available in Project Euclid: 21 August 2014
Permanent link to this document
https://projecteuclid.org/euclid.atmp/1408626511
Mathematical Reviews number (MathSciNet)
MR3262520
Zentralblatt MATH identifier
1295.81135
Citation
Cacciatori, Sergio L.; Cerchiai, Bianca L.; Marrani, Alessio. Magic coset decompositions. Adv. Theor. Math. Phys. 17 (2013), no. 5, 1077--1128. https://projecteuclid.org/euclid.atmp/1408626511


