Advances in Theoretical and Mathematical Physics

Vortex equation and reflexive sheaves

Indranil Biswas and Matthias Stemmler

Full-text: Open access

Abstract

It is known that given a stable holomorphic pair $(E,\phi)$, where $E$ is a holomorphic vector bundle on a compact Kähler manifold $X$ and $\phi$ is a holomorphic section of $E$, the vector bundle $E$ admits a Hermitian metric solving the vortex equation. We generalize this to pairs $(E,\phi)$, where $E$ is a reflexive sheaf on $X$.

Article information

Source
Adv. Theor. Math. Phys., Volume 16, Number 2 (2012), 713-723.

Dates
First available in Project Euclid: 23 January 2013

Permanent link to this document
https://projecteuclid.org/euclid.atmp/1358950892

Mathematical Reviews number (MathSciNet)
MR3019415

Zentralblatt MATH identifier
1270.53063

Citation

Biswas, Indranil; Stemmler, Matthias. Vortex equation and reflexive sheaves. Adv. Theor. Math. Phys. 16 (2012), no. 2, 713--723. https://projecteuclid.org/euclid.atmp/1358950892


Export citation