Advances in Theoretical and Mathematical Physics

Geometries, non-geometries, and fluxes

Jock McOrist, David R. Morrison, and Savdeep Sethi

Full-text: Open access

Abstract

Using F-theory/heterotic duality, we describe a framework for analyzing non-geometric $T_2$-fibered heterotic compactifications to six- and four dimensions. Our results suggest that among $T_2$-fibered heterotic string vacua, the non-geometric compactifications are just as typical as the geometric ones. We also construct four-dimensional solutions that have novel type-IIB and M-theory dual descriptions. These duals are non-geometric with three- and four-form fluxes not of (2, 1) or (2, 2) Hodge type, respectively, and yet preserve at least $N = 1$ supersymmetry.

Article information

Source
Adv. Theor. Math. Phys., Volume 14, Number 5 (2010), 1515-1583.

Dates
First available in Project Euclid: 21 September 2011

Permanent link to this document
https://projecteuclid.org/euclid.atmp/1316638444

Mathematical Reviews number (MathSciNet)
MR2826187

Zentralblatt MATH identifier
1241.81134

Citation

McOrist, Jock; Morrison, David R.; Sethi, Savdeep. Geometries, non-geometries, and fluxes. Adv. Theor. Math. Phys. 14 (2010), no. 5, 1515--1583. https://projecteuclid.org/euclid.atmp/1316638444


Export citation

References

  • [1] C. Vafa, Evidence for F-theory, Nucl. Phys. B469 (1996), 403–418, arXiv:hep-th/9602022.
  • [2] A. Sen, Orientifold limit of F-theory vacua, Phys. Rev. D55 (1997), 7345–7349.
  • [3] K. Dasgupta, G. Rajesh and S. Sethi, M theory, orientifolds and G-flux, J. High Energy Phys. 08 (1999), 023.
  • [4] N. Berkovits, ICTP lectures on covariant quantization of the superstring, 2002 Spring School on Superstrings and Related Matters, ICTP Lect. Notes, vol. XIII, Abdus Salam Int. Cent. Theoret. Phys., Trieste, 2003, pp. 57–107, arXiv:hep-th/0209059.
  • [5] W. D. Linch, III, J. McOrist and B. C. Vallilo, Type IIB flux vacua from the string worldsheet, J. High Energy Phys. 09 (2008), 042. [hep-th].
  • [6] A. Clingher and C. F. Doran, Modular invariants for lattice polarized K3 surfaces, Michigan Math. J. 55 (2007), 355–393.
  • [7] L. Carlevaro, D. Israel and P. Marios Petropoulos, Double-Scaling limit of heterotic bundles and dynamical deformation in CFT, Nucl. Phys. B827 (2010), 503–544. [hep-th].
  • [8] L. Carlevaro and D. Israel, Heterotic resolved conifolds with torsion, from supergravity to CFT, J. High Energy Phys. 01 (2010), 083. [hep-th].
  • [9] A. Strominger, S.-T. Yau and E. Zaslow, Mirror symmetry is T-duality, Nucl. Phys. B479 (1996), 243–259.
  • [10] J. de Boer, R. Dijkgraaf, K. Hori, A. Keurentjes, J. Morgan, D. R. Morrison and S. Sethi, Triples, fluxes, and strings, Adv. Theor. Math. Phys. 4 (2001), 995–1186.
  • [11] A. Kumar and C. Vafa, U-manifolds, Phys. Lett. B396 (1997), 85–90, arXiv:hep-th/9611007.
  • [12] S. Hellerman, J. McGreevy and B. Williams, Geometric constructions of nongeometric string theories, J. High Energy Phys. 01 (2004), 024, arXiv:hep-th/0208174.
  • [13] C. M. Hull, A geometry for non-geometric string backgrounds, J. High Energy Phys. 10 (2005), 065.
  • [14] R. A. Reid-Edwards and B. Spanjaard, N = 4 gauged supergravity from duality-twist compactifications of string theory, J. High Energy Phys. 12 (2008), 052. [hep-th].
  • [15] S. D. Avramis, J.-P. Derendinger and N. Prezas, Conformal chiral boson models on twisted doubled tori and non-geometric string vacua, Nucl. Phys. B827 (2010), 281–310. [hep-th].
  • [16] D. S. Berman, N. B. Copland and D. C. Thompson, Background field equations for the duality symmetric string, Nucl. Phys. B791 (2008), 175–191. [hep-th].
  • [17] S. Sethi, A note on heterotic dualities via M-theory, Phys. Lett. B659 (2008), 385–387. [hep-th].
  • [18] J. Shelton, W. Taylor and B. Wecht, Generalized flux vacua, J. High Energy Phys. 02 (2007), 095.
  • [19] B. Wecht, Lectures on nongeometric flux compactifications, Class. Quant. Grav. 24 (2007), S773–S794. [hep-th].
  • [20] M. Ihl, D. Robbins and T. Wrase, Toroidal orientifolds in IIA with general NS-NS fluxes, J. High Energy Phys. 08 (2007), 043. [hep-th].
  • [21] K. Becker and S. Sethi, Torsional heterotic geometries, Nucl. Phys. B820 (2009), 1–31. [hep-th].
  • [22] M. Cvetic, T. Liu and M. B. Schulz, Twisting K3 × T2 orbifolds, J. High Energy Phys. 09 (2007), 092.
  • [23] P. Koerber and D. Tsimpis, Supersymmetric sources, integrability and generalized- structure compactifications, J. High Energy Phys. 08 (2007), 082, arXiv:0706.1244 [hep-th].
  • [24] F. Marchesano and W. Schulgin, Non-geometric fluxes as supergravity backgrounds, Phys. Rev. D76 (2007), 041901. [hep-th].
  • [25] D. Andriot, New supersymmetric flux vacua with intermediate SU(2) structure, J. High Energy Phys. 08 (2008), 096. [hep-th].
  • [26] W. Schulgin and J. Troost, Backreacted T-folds and non-geometric regions in configuration space, J. High Energy Phys. 12 (2008), 098. [hep-th].
  • [27] D. Vegh and J. McGreevy, Semi-flatland, J. High Energy Phys. 10 (2008), 068. [hep-th].
  • [28] J. de Boer and M. Shigemori, Exotic branes and non-geometric backgrounds, arXiv:1004.2521 [hep-th].
  • [29] B. R. Greene, A. Shapere, C. Vafa and S.-T. Yau, Stringy cosmic strings and noncompact Calabi–Yau manifolds, Nucl. Phys. B337 (1990), 1–36.
  • [30] K. Kodaira, On compact analytic surfaces. II, III, Ann. Math. (2) 77 (1963), 563–626, 78 (1963) 1–40.
  • [31] S. Kawai, Elliptic fibre spaces over compact surfaces, Comment. Math. Univ. St. Paul. 15 (1966/1967), 119–138.
  • [32] K. Ueno, Classification of algebraic varieties. I, Composit. Math. 27 (1973), 277–342.
  • [33] P. Deligne, Courbes elliptiques: formulaire (d’après J. Tate), Modular functions of one variable, IV (Proc. Internat. Summer School, Univ. Antwerp, Antwerp, 1972), Lecture Notes in Math., vol. 476, Springer, Berlin, 1975, pp. 53–73.
  • [34] N. Nakayama, On Weierstrass models, Algebraic geometry and commutative algebra, Vol. II, Kinokuniya, 1988, pp. 405–431.
  • [35] N. Nakayama, Local structure of an elliptic fibration, Higher dimensional birational geometry (Kyoto, 1997), Adv. Stud. Pure Math., vol. 35, Math. Soc. Japan, 2002, pp. 185–295.
  • [36] N. Nakayama, Global structure of an elliptic fibration, Publ. Res. Inst. Math. Sci. 38 (2002), 451–649.
  • [37] D. R. Morrison and C. Vafa, Compactifications of F-theory on Calabi–Yau threefolds, I, Nucl. Phys. B473 (1996), 74–92.
  • [38] D. R. Morrison and C. Vafa, Compactifications of F-theory on Calabi–Yau threefolds, II, Nucl. Phys. B476 (1996), 437–469.
  • [39] A. Sen, F-theory and orientifolds, Nucl. Phys. B475 (1996), 562–578, arXiv:hep-th/9605150.
  • [40] K. Dasgupta and S. Mukhi, F-theory at constant coupling, Phys. Lett. B385 (1996), 125–131.
  • [41] P. S. Aspinwall, Enhanced gauge symmetries and Calabi–Yau threefolds, Phys. Lett. B371 (1996), 231–237.
  • [42] S. Katz, D. R. Morrison and M. R. Plesser, Enhanced gauge symmetry in type II string theory, Nucl. Phys. B477 (1996), 105–140.
  • [43] A. Klemm and P. Mayr, Strong coupling singularities and non-abelian gauge symmetries in N = 2 string theory, Nucl. Phys. B469 (1996), 37–50, arXiv:hep-th/9601014.
  • [44] E. Witten, Phase transitions in M-theory and F-theory, Nucl. Phys. B471 (1996), 195–216.
  • [45] D. R. Morrison, On K3 surfaces with large Picard number, Invent. Math. 75 (1984), 105–121.
  • [46] P. S. Aspinwall and D. R. Morrison, Point-like instantons on K3 orbifolds, Nucl. Phys. B503 (1997), 533–564.
  • [47] P. S. Aspinwall and M. Gross, The SO(32) heterotic string on a K3 surface, Phys. Lett. B387 (1996), 735–742.
  • [48] P. S. Aspinwall, Point-like instantons and the Spin(32)/Z2 heterotic string, Nucl. Phys. B496 (1997), 149–176.
  • [49] M. J. Duff, R. Minasian and E.Witten, Evidence for heterotic/heterotic duality, Nucl. Phys. B465 (1996), 413–438.
  • [50] G. Lopes Cardoso, G. Curio, D. Lust and T. Mohaupt, On the duality between the heterotic string and F-theory in 8 dimensions, Phys. Lett. B389 (1996), 479–484, arXiv:hep-th/9609111.
  • [51] W. Lerche and S. Stieberger, Prepotential, mirror map and Ftheory on K3, Adv. Theor. Math. Phys. 2 (1998), 1105–1140.
  • [52] T. Shioda, Kummer sandwich theorem of certain elliptic K3 surfaces, Proc. Japan Acad. Ser. A Math. Sci. 82 (2006), 137–140.
  • [53] T. Shioda and H. Inose, On singular K3 surfaces, Complex analysis and algebraic geometry, Iwanami Shoten, 1977, pp. 119–136.
  • [54] H. Inose, Defining equations of singular K3 surfaces and a notion of isogeny, Proceedings of the International Symposium on Algebraic Geometry (Kyoto Univ., Kyoto, 1977), Kinokuniya Book Store, Tokyo, 1978, pp. 495–502.
  • [55] D. Mumford, Abelian varieties, Oxford University Press, Oxford, 1970.
  • [56] D. R. Morrison, The Kuga–Satake variety of an abelian surface, J.Algebra 92 (1985), 454–476.
  • [57] E. Witten, Small instantons in string theory, Nucl. Phys. B460 (1996), 541–559.
  • [58] M. Berkooz, R. G. Leigh, J. Polchinski, J. H. Schwarz, N. Seiberg and E. Witten, Anomalies, dualities, and topology of D = 6 N = 1 superstring vacua, Nucl. Phys. B475 (1996), 115–148.
  • [59] O. J. Ganor and A. Hanany, Small E8 instantons and tensionless non critical strings, Nucl. Phys. B474 (1996), 122–140.
  • [60] N. Seiberg and E. Witten, Comments on string dynamics in six dimensions, Nucl. Phys. B471 (1996), 121–134.
  • [61] E. Witten, Phases of N = 2 theories in two dimensions, Nucl. Phys. B403 (1993), 159–222.
  • [62] P. Candelas, D.-E. Diaconescu, B. Florea, D. R. Morrison and G. Rajesh, Codimension-three bundle singularities in F-theory, J. High Energy Phys. 06 (2002), 014.
  • [63] S. Sethi, C. Vafa and E. Witten, Constraints on low-dimensional string compactifications, Nucl. Phys. B480 (1996), 213–224.
  • [64] R. Friedman, J. Morgan and E. Witten, Vector bundles and F theory, Commun. Math. Phys. 187 (1997), 679–743.
  • [65] D. Robbins and S. Sethi, A barren landscape, Phys. Rev. D71 (2005), 046008, arXiv:hep-th/0405011.
  • [66] K. Becker, C. Bertinato, Y.-C. Chung and G. Guo, Supersymmetry breaking, heterotic strings and fluxes, Nucl. Phys. B823 (2009), 428–447. [hep-th].
  • [67] A. Strominger, Superstrings with torsion, Nucl. Phys. B274 (1986), 253.
  • [68] J. Shelton, W. Taylor and B. Wecht, Nongeometric flux compactifications, J. High Energy Phys. 10 (2005), 085.
  • [69] K. Becker and M. Becker, M-theory on eight-manifolds, Nucl. Phys. B477 (1996), 155–167.
  • [70] J. P. Gauntlett, D. Martelli, S. Pakis, and D. Waldram, G-structures and wrapped NS5-branes, Commun. Math. Phys. 247 (2004), 421–445, arXiv:hep-th/0205050.
  • [71] J. P. Gauntlett and S. Pakis, The geometry of D = 11 Killing spinors, J. High Energy Phys. 04 (2003), 039.
  • [72] J. P. Gauntlett, D. Martelli and D.Waldram, Superstrings with intrinsic torsion, Phys. Rev. D69 (2004), 086002.
  • [73] M. Graña, Flux compactifications in string theory: a comprehensive review, Phys. Rep. 423 (2006), 91–158.
  • [74] S. Gukov, C. Vafa and E. Witten, CFT’s from Calabi–Yau four-folds, Nucl. Phys. B584 (2000), 69–108.
  • [75] G. Dall’Agata, On supersymmetric solutions of type-IIB supergravity with general fluxes, Nucl. Phys. B695 (2004), 243–266.
  • [76] D. Tsimpis, M-theory on eight-manifolds revisited: N = 1 supersymmetry and generalized Spin(7) structures, J. High Energy Phys. 04 (2006), 027, arXiv:hep-th/0511047.
  • [77] P. S. Aspinwall and D. R. Morrison, Non-simply-connected gauge groups and rational points on elliptic curves, J. High Energy Phys. 07 (1998), 012, arXiv:hep-th/9805206.
  • [78] K. Oguiso, On Jacobian fibrations on the Kummer surfaces of the product of nonisogenous elliptic curves, J. Math. Soc. Japan 41 (1989), 651–680.
  • [79] C. V. Johnson, D-brane primer, Strings, branes and gravity, TASI 99 (Boulder, CO), World Sci. Publ., River Edge, NJ, 2001, pp. 129–350, arXiv:hep-th/0007170.
  • [80] E. Bergshoeff, C. M. Hull and T. Ortin, Duality in the type-II superstring effective action, Nucl. Phys. B451 (1995), 547–578.
  • [81] S. F. Hassan, T-duality, space-time spinors and R-R fields in curved backgrounds, Nucl. Phys. B568 (2000), 145–161.