Advances in Theoretical and Mathematical Physics

Constructing new Calabi-Yau 3-folds and their mirrors via conifold transitions

Victor Batyrev and Maximilian Kreuzer

Full-text: Open access

Abstract

We construct a surprisingly large class of new Calabi–Yau 3-folds $X$ with small Picard numbers and propose a construction of their mirrors $X^∗$ using smoothings of toric hypersurfaces with conifold singularities. These new examples are related to the previously known ones via conifold transitions. Our results generalize the mirror construction for Calabi– Yau complete intersections in Grassmannians and flag manifolds via toric degenerations. There exist exactly 198849 reflexive four-polytopes whose two-faces are only triangles or parallelograms of minimal volume. Every such polytope gives rise to a family of Calabi–Yau hypersurfaces with at worst conifold singularities. Using a criterion of Namikawa we found 30241 reflexive four-polytopes such that the corresponding Calabi–Yau hypersurfaces are smoothable by a flat deformation. In particular, we found 210 reflexive four-polytopes defining 68 topologically different Calabi–Yau 3-folds with $h_11 = 1$. We explain the mirror construction and compute several new Picard–Fuchs operators for the respective oneparameter families of mirror Calabi–Yau 3-folds.

Article information

Source
Adv. Theor. Math. Phys., Volume 14, Number 3 (2010), 879-898.

Dates
First available in Project Euclid: 1 July 2011

Permanent link to this document
https://projecteuclid.org/euclid.atmp/1309526468

Mathematical Reviews number (MathSciNet)
MR2801412

Zentralblatt MATH identifier
1242.14037

Citation

Batyrev, Victor; Kreuzer, Maximilian. Constructing new Calabi-Yau 3-folds and their mirrors via conifold transitions. Adv. Theor. Math. Phys. 14 (2010), no. 3, 879--898. https://projecteuclid.org/euclid.atmp/1309526468


Export citation