Advances in Theoretical and Mathematical Physics

The Glueball Superpotential

Mina Aganagic, Ken Intriligator, Cumrun Vafa, and Nicholas P. Warner

Full-text: Open access


We compute glueball superpotentials for four-dimensional, ${\cal N}=1$ supersymmetric gauge theories, with arbitrary gauge groups and massive matter representations. This is done by perturbatively integrating out massive charged fields. The Feynman diagram computations simplify, and are related to the corresponding matrix model. This leads to a natural notion of ``projection to planar diagrams'' for arbitrary gauge groups and representations. We discuss a general ambiguity in the glueball superpotential $W(S)$ for terms, $S^n$, whose order, $n$ is greater than the dual Coxeter number. This ambiguity can be resolved for all classical gauge groups $(A,B,C,D)$, via a natural embedding in an infinite rank supergroup. We use this to resolve some recently raised puzzles. For exceptional groups, we compute the superpotential terms for low powers of the glueball field and propose an all-order completion for some examples including ${\cal N}=1^*$ for all simply-laced groups. We also comment on compactification of these theories to lower dimensions.

Article information

Adv. Theor. Math. Phys., Volume 7, Number 6 (2003), 1045-1101.

First available in Project Euclid: 21 June 2004

Permanent link to this document

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier


Aganagic, Mina; Intriligator, Ken; Vafa, Cumrun; Warner, Nicholas P. The Glueball Superpotential. Adv. Theor. Math. Phys. 7 (2003), no. 6, 1045--1101.

Export citation