Advanced Studies in Pure Mathematics

Local Structure of an Elliptic Fibration

Noboru Nakayama

Full-text: Open access

Abstract

We classify all the projective elliptic fibrations defined over a unit polydisc whose discriminant loci are contained in a union of coordinate hyperplanes, up to the bimeromorphic equivalence relation. If the monodromies are unipotent and if general singular fibers are not of multiple type, then we can construct relative minimal models.

Article information

Source
Higher Dimensional Birational Geometry, S. Mori and Y. Miyaoka, eds. (Tokyo: Mathematical Society of Japan, 2002), 185-295

Dates
First available in Project Euclid: 31 December 2018

Permanent link to this document
https://projecteuclid.org/ euclid.aspm/1546230380

Digital Object Identifier
doi:10.2969/aspm/03510185

Mathematical Reviews number (MathSciNet)
MR1929795

Zentralblatt MATH identifier
1059.14015

Citation

Nakayama, Noboru. Local Structure of an Elliptic Fibration. Higher Dimensional Birational Geometry, 185--295, Mathematical Society of Japan, Tokyo, Japan, 2002. doi:10.2969/aspm/03510185. https://projecteuclid.org/euclid.aspm/1546230380


Export citation