Advanced Studies in Pure Mathematics

The Topology of Toric HyperKähler Manifolds

Hiroshi Konno

Full-text: Open access

Abstract

The topology of hyperKähler quotients of quaternionic vector spaces by tori is studied. We discuss the relation between their topology and a combinatorial property of some polyhedral complexes. As its simple application we compute their Chern classes.

Article information

Source
Minimal Surfaces, Geometric Analysis and Symplectic Geometry, K. Fukaya, S. Nishikawa and J. Spruck, eds. (Tokyo: Mathematical Society of Japan, 2002), 173-184

Dates
First available in Project Euclid: 31 December 2018

Permanent link to this document
https://projecteuclid.org/ euclid.aspm/1546230296

Digital Object Identifier
doi:10.2969/aspm/03410173

Mathematical Reviews number (MathSciNet)
MR1925738

Zentralblatt MATH identifier
1039.53052

Subjects
Primary: 53C26: Hyper-Kähler and quaternionic Kähler geometry, "special" geometry
Secondary: 53D20: Momentum maps; symplectic reduction

Citation

Konno, Hiroshi. The Topology of Toric HyperKähler Manifolds. Minimal Surfaces, Geometric Analysis and Symplectic Geometry, 173--184, Mathematical Society of Japan, Tokyo, Japan, 2002. doi:10.2969/aspm/03410173. https://projecteuclid.org/euclid.aspm/1546230296


Export citation