Advanced Studies in Pure Mathematics

Radical subgroups of the sporadic simple group of Suzuki

Satoshi Yoshiara

Full-text: Open access

Abstract

For the sporadic Suzuki simple group, the radical $p$-subgroups for $p = 2$ and 3 are classified and the simplicial complex of their chains is shown to be homotopically equivalent to a $p$-local geometry. Further investigation of the related complexes for $p = 2$ gives a counterexample to Conjecture 1 in [4].

Article information

Source
Groups and Combinatorics: In memory of Michio Suzuki, E. Bannai, H. Suzuki, H. Yamaki and T. Yoshida, eds. (Tokyo: Mathematical Society of Japan, 2001), 453-464

Dates
Received: 26 March 1999
Revised: 18 May 2000
First available in Project Euclid: 29 December 2018

Permanent link to this document
https://projecteuclid.org/ euclid.aspm/1546124720

Digital Object Identifier
doi:10.2969/aspm/03210453

Mathematical Reviews number (MathSciNet)
MR1893512

Zentralblatt MATH identifier
0997.20021

Citation

Yoshiara, Satoshi. Radical subgroups of the sporadic simple group of Suzuki. Groups and Combinatorics: In memory of Michio Suzuki, 453--464, Mathematical Society of Japan, Tokyo, Japan, 2001. doi:10.2969/aspm/03210453. https://projecteuclid.org/euclid.aspm/1546124720


Export citation