## Advanced Studies in Pure Mathematics

- Adv. Stud. Pure Math.
- Taniguchi Conference on Mathematics Nara '98, M. Maruyama and T. Sunada, eds. (Tokyo: Mathematical Society of Japan, 2001), 235 - 263

### Operator Algebras, Topology and Subgroups of Quantum Symmetry – Construction of Subgroups of Quantum Groups –

#### Abstract

In this article, we will discuss several interactions between the non commutative Galois problems, i.e., inclusions of operator algebras and topological quantum field theory in three dimensions. Those interactions are shown to be concretely solved and are related to both the quantum subgroups of the quantum group $SU(2)_N$ at the deformation parameter $q = \exp (2\pi i/N)$.

#### Article information

**Source***Taniguchi Conference on Mathematics Nara '98*, M. Maruyama and T. Sunada, eds. (Tokyo: Mathematical Society of Japan, 2001), 235-263

**Dates**

Received: 18 September 1999

First available in Project Euclid:
29 December 2018

**Permanent link to this document**

https://projecteuclid.org/
euclid.aspm/1546124590

**Digital Object Identifier**

doi:10.2969/aspm/03110235

**Mathematical Reviews number (MathSciNet)**

MR1865095

**Zentralblatt MATH identifier**

1021.46053

#### Citation

Ocneanu, Adrian. Operator Algebras, Topology and Subgroups of Quantum Symmetry – Construction of Subgroups of Quantum Groups –. Taniguchi Conference on Mathematics Nara '98, 235--263, Mathematical Society of Japan, Tokyo, Japan, 2001. doi:10.2969/aspm/03110235. https://projecteuclid.org/euclid.aspm/1546124590