Advanced Studies in Pure Mathematics

Continuity of weakly monotone Sobolev functions of variable exponent

Toshihide Futamura and Yoshihiro Mizuta

Full-text: Open access

Abstract

Our aim in this paper is to deal with continuity properties for weakly monotone Sobolev functions of variable exponent.

Article information

Source
Potential Theory in Matsue, H. Aikawa, T. Kumagai, Y. Mizuta and N. Suzuki, eds. (Tokyo: Mathematical Society of Japan, 2006), 127-143

Dates
Received: 1 December 2004
Revised: 1 March 2005
First available in Project Euclid: 16 December 2018

Permanent link to this document
https://projecteuclid.org/ euclid.aspm/1544999685

Digital Object Identifier
doi:10.2969/aspm/04410127

Mathematical Reviews number (MathSciNet)
MR2277828

Zentralblatt MATH identifier
1119.31002

Subjects
Primary: 30C65: Quasiconformal mappings in $R^n$ , other generalizations 31B15: Potentials and capacities, extremal length 46E35: Sobolev spaces and other spaces of "smooth" functions, embedding theorems, trace theorems

Keywords
weakly monotone Sobolev functions of variable exponent 0-Hölder continuous capacity tangential boundary limits

Citation

Futamura, Toshihide; Mizuta, Yoshihiro. Continuity of weakly monotone Sobolev functions of variable exponent. Potential Theory in Matsue, 127--143, Mathematical Society of Japan, Tokyo, Japan, 2006. doi:10.2969/aspm/04410127. https://projecteuclid.org/euclid.aspm/1544999685


Export citation