Advanced Studies in Pure Mathematics

On Nash blow-up of orbifolds

Gerard Gonzalez-Sprinberg

Full-text: Open access

Abstract

A short survey on the Nash blow-up of singular varieties, applications and examples in particular for orbifolds, followed by some new results for threefolds.

Article information

Source
Singularities — Niigata–Toyama 2007, J.-P. Brasselet, S. Ishii, T. Suwa and M. Vaquie, eds. (Tokyo: Mathematical Society of Japan, 2009), 133-149

Dates
Received: 11 April 2008
Revised: 26 September 2008
First available in Project Euclid: 28 November 2018

Permanent link to this document
https://projecteuclid.org/ euclid.aspm/1543448015

Digital Object Identifier
doi:10.2969/aspm/05610133

Mathematical Reviews number (MathSciNet)
MR2604080

Zentralblatt MATH identifier
1231.14029

Subjects
Primary: 14J17: Singularities [See also 14B05, 14E15] 32045 14L30: Group actions on varieties or schemes (quotients) [See also 13A50, 14L24, 14M17] 14M25: Toric varieties, Newton polyhedra [See also 52B20]

Keywords
Nash blow-up orbifolds rational singularities toric varieties

Citation

Gonzalez-Sprinberg, Gerard. On Nash blow-up of orbifolds. Singularities — Niigata–Toyama 2007, 133--149, Mathematical Society of Japan, Tokyo, Japan, 2009. doi:10.2969/aspm/05610133. https://projecteuclid.org/euclid.aspm/1543448015


Export citation