Advanced Studies in Pure Mathematics

Local Gromov–Witten invariants of cubic surfaces

Yukiko Konishi

Full-text: Open access

Abstract

We compute local Gromov–Witten invariants of cubic surfaces via nef toric degeneration.

Article information

Source
Noncommutativity and Singularities: Proceedings of French–Japanese symposia held at IHÉS in 2006, J.-P. Bourguignon, M. Kotani, Y. Maeda and N. Tose, eds. (Tokyo: Mathematical Society of Japan, 2009), 263-268

Dates
Received: 2 August 2007
Revised: 29 March 2008
First available in Project Euclid: 28 November 2018

Permanent link to this document
https://projecteuclid.org/ euclid.aspm/1543447913

Digital Object Identifier
doi:10.2969/aspm/05510263

Mathematical Reviews number (MathSciNet)
MR2463502

Zentralblatt MATH identifier
1179.14036

Subjects
Primary: 14N35: Gromov-Witten invariants, quantum cohomology, Gopakumar-Vafa invariants, Donaldson-Thomas invariants [See also 53D45] 53D45: Gromov-Witten invariants, quantum cohomology, Frobenius manifolds [See also 14N35]

Keywords
Gromov–Witten invariants

Citation

Konishi, Yukiko. Local Gromov–Witten invariants of cubic surfaces. Noncommutativity and Singularities: Proceedings of French–Japanese symposia held at IHÉS in 2006, 263--268, Mathematical Society of Japan, Tokyo, Japan, 2009. doi:10.2969/aspm/05510263. https://projecteuclid.org/euclid.aspm/1543447913


Export citation