Advanced Studies in Pure Mathematics

A note on Fano surfaces of nodal cubic threefolds

Gerard van der Geer and Alexis Kouvidakis

Full-text: Open access

Abstract

We study the Picard variety of the Fano surface of nodal and mildly cuspidal cubic threefolds in arbitrary characteristic by relating divisors on the Fano surface to divisors on the symmetric product of a curve of genus 4.

Article information

Source
Algebraic and Arithmetic Structures of Moduli Spaces (Sapporo 2007), I. Nakamura and L. Weng, eds. (Tokyo: Mathematical Society of Japan, 2010), 27-45

Dates
Received: 23 February 2009
First available in Project Euclid: 24 November 2018

Permanent link to this document
https://projecteuclid.org/ euclid.aspm/1543086127

Digital Object Identifier
doi:10.2969/aspm/05810027

Mathematical Reviews number (MathSciNet)
MR2676156

Zentralblatt MATH identifier
1215.14045

Subjects
Primary: 14C25: Algebraic cycles 14K30: Picard schemes, higher Jacobians [See also 14H40, 32G20] 14H40: Jacobians, Prym varieties [See also 32G20]

Citation

van der Geer, Gerard; Kouvidakis, Alexis. A note on Fano surfaces of nodal cubic threefolds. Algebraic and Arithmetic Structures of Moduli Spaces (Sapporo 2007), 27--45, Mathematical Society of Japan, Tokyo, Japan, 2010. doi:10.2969/aspm/05810027. https://projecteuclid.org/euclid.aspm/1543086127


Export citation