Advanced Studies in Pure Mathematics

$p$-adic multiple zeta values, $p$-adic multiple $L$-values, and motivic Galois groups

Go Yamashita

Full-text: Open access

Abstract

We will give a survey on the theory of $p$-adic multiple zeta values and $p$-adic multiple $L$-values.

Article information

Source
Galois–Teichmüller Theory and Arithmetic Geometry, H. Nakamura, F. Pop, L. Schneps and A. Tamagawa, eds. (Tokyo: Mathematical Society of Japan, 2012), 629-658

Dates
Received: 11 May 2011
Revised: 28 September 2011
First available in Project Euclid: 24 October 2018

Permanent link to this document
https://projecteuclid.org/ euclid.aspm/1540417833

Digital Object Identifier
doi:10.2969/aspm/06310629

Mathematical Reviews number (MathSciNet)
MR3051258

Zentralblatt MATH identifier
1321.11092

Subjects
Primary: 11G99: None of the above, but in this section
Secondary: 11G55: Polylogarithms and relations with $K$-theory 11M32: Multiple Dirichlet series and zeta functions and multizeta values

Keywords
$p$-adic multiple zeta values $p$-adic multiple $L$-values $p$-adic multiple polylogarithms $p$-adic integration motivic Galois groups mixed Tate motives algebraic $K$-theory associators $p$-adic KZ-equation fundamental groups Grothendieck–Teichmüller group Tannakian category

Citation

Yamashita, Go. $p$-adic multiple zeta values, $p$-adic multiple $L$-values, and motivic Galois groups. Galois–Teichmüller Theory and Arithmetic Geometry, 629--658, Mathematical Society of Japan, Tokyo, Japan, 2012. doi:10.2969/aspm/06310629. https://projecteuclid.org/euclid.aspm/1540417833


Export citation