Open Access
VOL. 76 | 2018 Quadratic transformations for orthogonal polynomials in one and two variables
Tom H. Koornwinder

Editor(s) Hitoshi Konno, Hidetaka Sakai, Junichi Shiraishi, Takao Suzuki, Yasuhiko Yamada

Adv. Stud. Pure Math., 2018: 419-447 (2018) DOI: 10.2969/aspm/07610419

Abstract

We discuss quadratic transformations for orthogonal polynomials in one and two variables. In the one-variable case we list many (or all) quadratic transformations between families in the Askey scheme or $q$-Askey scheme. In the two-variable case we focus, after some generalities, on the polynomials associated with root system $BC_2$, i.e., $BC_2$-type Jacobi polynomials if $q=1$ and Koornwinder polynomials in two variables in the $q$-case.

Information

Published: 1 January 2018
First available in Project Euclid: 21 September 2018

zbMATH: 07039309
MathSciNet: MR3837928

Digital Object Identifier: 10.2969/aspm/07610419

Subjects:
Primary: 33C45 , 33C52 , ‎33D45 , 33D52

Keywords: $BC_2$-type Jacobi polynomials , ($q$-)Askey scheme , Koornwinder polynomials in two variables , orthogonal polynomials , orthogonal polynomials in two variables , quadratic transformations

Rights: Copyright © 2018 Mathematical Society of Japan

PROCEEDINGS ARTICLE
29 PAGES


Back to Top