Advanced Studies in Pure Mathematics

Length Functions for $G(r, p, n)$

Toshiaki Shoji

Full-text: Open access


In this paper, we construct a length function $n(w)$ for the complex reflection group $W = G(r, p, n)$ by making use of certain partitions of the root system associated to $\widetilde{W} = G(r, 1, n)$. We show that the function $n(w)$ yields the Poincaré polynomial $P_W(q)$. We give some characterization of this function in a way independent of the choice of the root system.

Article information

Combinatorial Methods in Representation Theory, K. Koike, M. Kashiwara, S. Okada, I. Terada and H.-F. Yamada, eds. (Tokyo: Mathematical Society of Japan, 2000), 327-342

Received: 23 February 1999
First available in Project Euclid: 20 August 2018

Permanent link to this document euclid.aspm/1534789266

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier


Shoji, Toshiaki. Length Functions for $G(r, p, n)$. Combinatorial Methods in Representation Theory, 327--342, Mathematical Society of Japan, Tokyo, Japan, 2000. doi:10.2969/aspm/02810327.

Export citation