Advanced Studies in Pure Mathematics

Schur’s $Q$-functions and Twisted Affine Lie Algebras

Tatsuhiro Nakajima and Hiro-Fumi Yamada

Full-text: Open access

Abstract

Weight vectors of the basic representations of $A^{(2)}_{2\ell}$ and $D^{(2)}_{\ell+1}$ are studied. They are expressed in terms of Schur’s $Q$-functions. The up and down motion along the string of the fundamental imaginary root is described as a combinatorial game.

Article information

Source
Combinatorial Methods in Representation Theory, K. Koike, M. Kashiwara, S. Okada, I. Terada and H.-F. Yamada, eds. (Tokyo: Mathematical Society of Japan, 2000), 241-259

Dates
Received: 24 December 1998
First available in Project Euclid: 20 August 2018

Permanent link to this document
https://projecteuclid.org/ euclid.aspm/1534789262

Digital Object Identifier
doi:10.2969/aspm/02810241

Mathematical Reviews number (MathSciNet)
MR1864483

Zentralblatt MATH identifier
1058.17016

Citation

Nakajima, Tatsuhiro; Yamada, Hiro-Fumi. Schur’s $Q$-functions and Twisted Affine Lie Algebras. Combinatorial Methods in Representation Theory, 241--259, Mathematical Society of Japan, Tokyo, Japan, 2000. doi:10.2969/aspm/02810241. https://projecteuclid.org/euclid.aspm/1534789262


Export citation