Advanced Studies in Pure Mathematics

A Langlands Classification for Unitary Representations

David A. Vogan, Jr.

Full-text: Open access

Abstract

The Langlands classification theorem describes all admissible representations of a reductive group $G$ in terms of the tempered representations of Levi subgroups of $G$. I will describe work with Susana Salamanca-Riba that provides (conjecturally) a similar description of the unitary representations of $G$ in terms of certain very special unitary representations of Levi subgroups.

Article information

Source
Analysis on Homogeneous Spaces and Representation Theory of Lie Groups, Okayama-Kyoto, T. Kobayashi, M. Kashiwara, T. Matsuki, K. Nishiyama and T. Oshima, eds. (Tokyo: Mathematical Society of Japan, 2000), 299-324

Dates
Received: 2 April 1998
First available in Project Euclid: 20 August 2018

Permanent link to this document
https://projecteuclid.org/ euclid.aspm/1534788131

Digital Object Identifier
doi:10.2969/aspm/02610299

Mathematical Reviews number (MathSciNet)
MR1770725

Zentralblatt MATH identifier
1015.22008

Citation

Vogan, Jr., David A. A Langlands Classification for Unitary Representations. Analysis on Homogeneous Spaces and Representation Theory of Lie Groups, Okayama-Kyoto, 299--324, Mathematical Society of Japan, Tokyo, Japan, 2000. doi:10.2969/aspm/02610299. https://projecteuclid.org/euclid.aspm/1534788131


Export citation