Analysis & PDE

  • Anal. PDE
  • Volume 12, Number 5 (2019), 1295-1324.

Cartan subalgebras of tensor products of free quantum group factors with arbitrary factors

Yusuke Isono

Full-text: Access denied (no subscription detected)

However, an active subscription may be available with MSP at msp.org/apde.

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Abstract

Let G be a free (unitary or orthogonal) quantum group. We prove that for any nonamenable subfactor NL(G) which is an image of a faithful normal conditional expectation, and for any σ-finite factor B, the tensor product N¯B has no Cartan subalgebras. This generalizes our previous work that provides the same result when B is finite. In the proof, we establish Ozawa–Popa and Popa–Vaes’s weakly compact action on the continuous core of L(G)¯B as the one relative to B, by using an operator-valued weight to B and the central weak amenability of G ̂.

Article information

Source
Anal. PDE, Volume 12, Number 5 (2019), 1295-1324.

Dates
Received: 11 January 2018
Accepted: 16 September 2018
First available in Project Euclid: 5 January 2019

Permanent link to this document
https://projecteuclid.org/euclid.apde/1546657234

Digital Object Identifier
doi:10.2140/apde.2019.12.1295

Mathematical Reviews number (MathSciNet)
MR3892405

Zentralblatt MATH identifier
07006763

Subjects
Primary: 46L10: General theory of von Neumann algebras 46L36: Classification of factors
Secondary: 58B32: Geometry of quantum groups

Keywords
von Neumann algebra type III factor Cartan subalgebra

Citation

Isono, Yusuke. Cartan subalgebras of tensor products of free quantum group factors with arbitrary factors. Anal. PDE 12 (2019), no. 5, 1295--1324. doi:10.2140/apde.2019.12.1295. https://projecteuclid.org/euclid.apde/1546657234


Export citation

References

  • C. Anantharaman-Delaroche, “On relative amenability for von Neumann algebras”, Compositio Math. 74:3 (1990), 333–352.
  • C. Anantharaman-Delaroche and J.-F. Havet, “On approximate factorizations of completely positive maps”, J. Funct. Anal. 90:2 (1990), 411–428.
  • M. Baillet, Y. Denizeau, and J.-F. Havet, “Indice d'une espérance conditionnelle”, Compositio Math. 66:2 (1988), 199–236.
  • R. Boutonnet, C. Houdayer, and S. Raum, “Amalgamated free product type III factors with at most one Cartan subalgebra”, Compos. Math. 150:1 (2014), 143–174.
  • M. Brannan, “Approximation properties for free orthogonal and free unitary quantum groups”, J. Reine Angew. Math. 672 (2012), 223–251.
  • N. P. Brown and N. Ozawa, $C^*$-algebras and finite-dimensional approximations, Graduate Studies in Mathematics 88, American Mathematical Society, Providence, RI, 2008.
  • I. Chifan and C. Houdayer, “Bass–Serre rigidity results in von Neumann algebras”, Duke Math. J. 153:1 (2010), 23–54.
  • I. Chifan and T. Sinclair, “On the structural theory of ${\rm II}_1$ factors of negatively curved groups”, Ann. Sci. Éc. Norm. Supér. $(4)$ 46:1 (2013), 1–33.
  • I. Chifan, T. Sinclair, and B. Udrea, “On the structural theory of $\mathrm{II}_1$ factors of negatively curved groups, II: Actions by product groups”, Adv. Math. 245 (2013), 208–236.
  • A. Connes, “A factor not anti-isomorphic to itself”, Ann. Math. $(2)$ 101 (1975), 536–554.
  • K. De Commer, A. Freslon, and M. Yamashita, “CCAP for universal discrete quantum groups”, Comm. Math. Phys. 331:2 (2014), 677–701.
  • J. Feldman and C. C. Moore, “Ergodic equivalence relations, cohomology, and von Neumann algebras, I”, Trans. Amer. Math. Soc. 234:2 (1977), 289–324.
  • A. Freslon, “Examples of weakly amenable discrete quantum groups”, J. Funct. Anal. 265:9 (2013), 2164–2187.
  • U. Haagerup, “Operator-valued weights in von Neumann algebras, I”, J. Funct. Anal. 32:2 (1979), 175–206.
  • U. Haagerup, “Operator-valued weights in von Neumann algebras, II”, J. Funct. Anal. 33:3 (1979), 339–361.
  • C. Houdayer and Y. Isono, “Unique prime factorization and bicentralizer problem for a class of type III factors”, Adv. Math. 305 (2017), 402–455.
  • C. Houdayer and E. Ricard, “Approximation properties and absence of Cartan subalgebra for free Araki–Woods factors”, Adv. Math. 228:2 (2011), 764–802.
  • Y. Isono, “Examples of factors which have no Cartan subalgebras”, Trans. Amer. Math. Soc. 367:11 (2015), 7917–7937.
  • Y. Isono, “On bi-exactness of discrete quantum groups”, Int. Math. Res. Not. 2015:11 (2015), 3619–3650.
  • Y. Isono, “Unique prime factorization for infinite tensor product factors”, preprint, 2017.
  • K. Jung, “Strongly 1-bounded von Neumann algebras”, Geom. Funct. Anal. 17:4 (2007), 1180–1200.
  • E. C. Lance, Hilbert $C^*$-modules: a toolkit for operator algebraists, London Mathematical Society Lecture Note Series 210, Cambridge University Press, 1995.
  • A. Maes and A. Van Daele, “Notes on compact quantum groups”, Nieuw Arch. Wisk. $(4)$ 16:1-2 (1998), 73–112.
  • A. Ocneanu, Actions of discrete amenable groups on von Neumann algebras, Lecture Notes in Mathematics 1138, Springer, 1985.
  • N. Ozawa, “Solid von Neumann algebras”, Acta Math. 192:1 (2004), 111–117.
  • N. Ozawa and S. Popa, “On a class of ${\rm II}_1$ factors with at most one Cartan subalgebra”, Ann. of Math. $(2)$ 172:1 (2010), 713–749.
  • W. L. Paschke, “Inner product modules over $B\sp{\ast} $-algebras”, Trans. Amer. Math. Soc. 182 (1973), 443–468.
  • W. L. Paschke, “Inner product modules arising from compact automorphism groups of von Neumann algebras”, Trans. Amer. Math. Soc. 224 (1976), 87–102.
  • S. Popa, “On a class of type ${\rm II}_1$ factors with Betti numbers invariants”, Ann. of Math. $(2)$ 163:3 (2006), 809–899.
  • S. Popa, “Strong rigidity of $\rm II_1$ factors arising from malleable actions of $w$-rigid groups, I”, Invent. Math. 165:2 (2006), 369–408.
  • S. Popa and S. Vaes, “Unique Cartan decomposition for $\rm II_1$ factors arising from arbitrary actions of free groups”, Acta Math. 212:1 (2014), 141–198.
  • S. Popa and S. Vaes, “Unique Cartan decomposition for $\rm II_{1}$ factors arising from arbitrary actions of hyperbolic groups”, J. Reine Angew. Math. 694 (2014), 215–239.
  • M. A. Rieffel, “Morita equivalence for $C\sp{\ast} $-algebras and $W\sp{\ast} $-algebras”, J. Pure Appl. Algebra 5 (1974), 51–96.
  • D. Shlyakhtenko, “Prime type III factors”, Proc. Natl. Acad. Sci. USA 97:23 (2000), 12439–12441.
  • M. Takesaki, Theory of operator algebras, I, Encyclopaedia of Mathematical Sciences 124, Springer, 1979.
  • S. Vaes and N. Vander Vennet, “Poisson boundary of the discrete quantum group $\widehat{A_u(F)}$”, Compos. Math. 146:4 (2010), 1073–1095.
  • S. Vaes and R. Vergnioux, “The boundary of universal discrete quantum groups, exactness, and factoriality”, Duke Math. J. 140:1 (2007), 35–84.
  • A. Van Daele and S. Wang, “Universal quantum groups”, Internat. J. Math. 7:2 (1996), 255–263.
  • R. Vergnioux, “Orientation of quantum Cayley trees and applications”, J. Reine Angew. Math. 580 (2005), 101–138.
  • D. Voiculescu, “The analogues of entropy and of Fisher's information measure in free probability theory, III: The absence of Cartan subalgebras”, Geom. Funct. Anal. 6:1 (1996), 172–199.
  • S. Wang, “Free products of compact quantum groups”, Comm. Math. Phys. 167:3 (1995), 671–692.
  • S. L. Woronowicz, “Compact quantum groups”, pp. 845–884 in Symétries quantiques (Les Houches, 1995), edited by A. Connes et al., North-Holland, Amsterdam, 1998.