Analysis & PDE

  • Anal. PDE
  • Volume 12, Number 4 (2019), 1065-1099.

Global geometry and $C^1$ convex extensions of 1-jets

Daniel Azagra and Carlos Mudarra

Full-text: Access denied (no subscription detected)

However, an active subscription may be available with MSP at

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text


Let E be an arbitrary subset of n (not necessarily bounded) and f : E , G : E n be functions. We provide necessary and sufficient conditions for the 1 -jet ( f , G ) to have an extension ( F , F ) with F : n convex and C 1 . Additionally, if G is bounded we can take F so that Lip ( F ) G . As an application we also solve a similar problem about finding convex hypersurfaces of class C 1 with prescribed normals at the points of an arbitrary subset of n .

Article information

Anal. PDE, Volume 12, Number 4 (2019), 1065-1099.

Received: 4 September 2017
Revised: 13 March 2018
Accepted: 30 July 2018
First available in Project Euclid: 30 October 2018

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 26B05: Continuity and differentiation questions 26B25: Convexity, generalizations 52A20: Convex sets in n dimensions (including convex hypersurfaces) [See also 53A07, 53C45]

convex function $C^1$ function Whitney extension theorem global differential geometry differentiable function


Azagra, Daniel; Mudarra, Carlos. Global geometry and $C^1$ convex extensions of 1-jets. Anal. PDE 12 (2019), no. 4, 1065--1099. doi:10.2140/apde.2019.12.1065.

Export citation


  • D. Azagra, “Global and fine approximation of convex functions”, Proc. Lond. Math. Soc. $(3)$ 107:4 (2013), 799–824.
  • D. Azagra and P. Hajłasz, “Lusin-type properties of convex functions”, preprint, 2017.
  • D. Azagra and C. Mudarra, “Whitney extension theorems for convex functions of the classes $C^1$ and $C^{1,\omega}$”, Proc. Lond. Math. Soc. $(3)$ 114:1 (2017), 133–158.
  • D. Azagra, J. Ferrera, F. López-Mesas, and Y. Rangel, “Smooth approximation of Lipschitz functions on Riemannian manifolds”, J. Math. Anal. Appl. 326:2 (2007), 1370–1378.
  • D. Azagra, E. Le Gruyer, and C. Mudarra, “Explicit formulas for $C^{1,1}$ and $C_{\rm conv}^{1,\omega}$ extensions of 1-jets in Hilbert and superreflexive spaces”, J. Funct. Anal. 274:10 (2018), 3003–3032.
  • Y. Brudnyi and P. Shvartsman, “Whitney's extension problem for multivariate $C^{1,\omega}$-functions”, Trans. Amer. Math. Soc. 353:6 (2001), 2487–2512.
  • A. Daniilidis, M. Haddou, E. Le Gruyer, and O. Ley, “Explicit formulas for $C^{1,1}$ Glaeser–Whitney extensions of 1-Taylor fields in Hilbert spaces”, Proc. Amer. Math. Soc. 146:10 (2018), 4487–4495.
  • C. L. Fefferman, “A sharp form of Whitney's extension theorem”, Ann. of Math. $(2)$ 161:1 (2005), 509–577.
  • C. Fefferman, “Whitney's extension problem for $C^m$”, Ann. of Math. $(2)$ 164:1 (2006), 313–359.
  • C. Fefferman, “Whitney's extension problems and interpolation of data”, Bull. Amer. Math. Soc. $($N.S.$)$ 46:2 (2009), 207–220.
  • C. Fefferman, A. Israel, and G. K. Luli, “Finiteness principles for smooth selection”, Geom. Funct. Anal. 26:2 (2016), 422–477.
  • C. Fefferman, A. Israel, and G. K. Luli, “Interpolation of data by smooth nonnegative functions”, Rev. Mat. Iberoam. 33:1 (2017), 305–324.
  • M. Ghomi, “Strictly convex submanifolds and hypersurfaces of positive curvature”, J. Differential Geom. 57:2 (2001), 239–271.
  • G. Glaeser, “Étude de quelques algèbres tayloriennes”, J. Analyse Math. 6 (1958), 1–124.
  • R. E. Greene and H. Wu, “$C\sp{\infty }$ approximations of convex, subharmonic, and plurisubharmonic functions”, Ann. Sci. École Norm. Sup. $(4)$ 12:1 (1979), 47–84.
  • A. Griewank and P. J. Rabier, “On the smoothness of convex envelopes”, Trans. Amer. Math. Soc. 322:2 (1990), 691–709.
  • M. Jiménez-Sevilla and L. Sánchez-González, “On smooth extensions of vector-valued functions defined on closed subsets of Banach spaces”, Math. Ann. 355:4 (2013), 1201–1219.
  • B. Kirchheim and J. Kristensen, “Differentiability of convex envelopes”, C. R. Acad. Sci. Paris Sér. I Math. 333:8 (2001), 725–728.
  • E. Le Gruyer, “Minimal Lipschitz extensions to differentiable functions defined on a Hilbert space”, Geom. Funct. Anal. 19:4 (2009), 1101–1118.
  • R. T. Rockafellar, Convex analysis, Princeton Mathematical Series 28, Princeton University Press, 1970.
  • K. Schulz and B. Schwartz, “Finite extensions of convex functions”, Math. Operationsforsch. Statist. Ser. Optim. 10:4 (1979), 501–509.
  • H. Whitney, “Analytic extensions of differentiable functions defined in closed sets”, Trans. Amer. Math. Soc. 36:1 (1934), 63–89.
  • M. Yan, “Extension of convex function”, J. Convex Anal. 21:4 (2014), 965–987.