Analysis & PDE

  • Anal. PDE
  • Volume 12, Number 3 (2019), 721-735.

Convergence of the Kähler–Ricci iteration

Tamás Darvas and Yanir A. Rubinstein

Full-text: Access denied (no subscription detected)

However, an active subscription may be available with MSP at msp.org/apde.

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Abstract

The Ricci iteration is a discrete analogue of the Ricci flow. According to Perelman, the Ricci flow converges to a Kähler–Einstein metric whenever one exists, and it has been conjectured that the Ricci iteration should behave similarly. This article confirms this conjecture. As a special case, this gives a new method of uniformization of the Riemann sphere.

Article information

Source
Anal. PDE, Volume 12, Number 3 (2019), 721-735.

Dates
Received: 15 June 2017
Revised: 27 April 2018
Accepted: 29 June 2018
First available in Project Euclid: 25 October 2018

Permanent link to this document
https://projecteuclid.org/euclid.apde/1540432868

Digital Object Identifier
doi:10.2140/apde.2019.12.721

Mathematical Reviews number (MathSciNet)
MR3864208

Zentralblatt MATH identifier
06986451

Subjects
Primary: 32Q20: Kähler-Einstein manifolds [See also 53Cxx]
Secondary: 14J45: Fano varieties 32W20: Complex Monge-Ampère operators

Keywords
Ricci iteration Kähler–Einstein metrics Fano manifolds

Citation

Darvas, Tamás; Rubinstein, Yanir A. Convergence of the Kähler–Ricci iteration. Anal. PDE 12 (2019), no. 3, 721--735. doi:10.2140/apde.2019.12.721. https://projecteuclid.org/euclid.apde/1540432868


Export citation

References

  • T. Aubin, “Réduction du cas positif de l'équation de Monge–Ampère sur les variétés kählériennes compactes à la démonstration d'une inégalité”, J. Funct. Anal. 57:2 (1984), 143–153.
  • S. Bando and T. Mabuchi, “Uniqueness of Einstein Kähler metrics modulo connected group actions”, pp. 11–40 in Algebraic geometry (Sendai, 1985), edited by T. Oda, Adv. Stud. Pure Math. 10, North-Holland, Amsterdam, 1987.
  • E. Bedford and B. A. Taylor, “A new capacity for plurisubharmonic functions”, Acta Math. 149:1-2 (1982), 1–40.
  • R. J. Berman, “A thermodynamical formalism for Monge–Ampère equations, Moser–Trudinger inequalities and Kähler–Einstein metrics”, Adv. Math. 248 (2013), 1254–1297.
  • R. J. Berman, S. Boucksom, P. Eyssidieux, V. Guedj, and A. Zeriahi, “Kähler–Einstein metrics and the Kähler–Ricci flow on log Fano varieties”, J. Reine Angew. Math. (online publication September 2016).
  • R. J. Berman, T. Darvas, and C. H. Lu, “Regularity of weak minimizers of the K-energy and applications to properness and K-stability”, preprint, 2016.
  • Z. Błocki, “On uniform estimate in Calabi–Yau theorem”, Sci. China Ser. A 48:suppl. (2005), 244–247.
  • Z. Błocki, “The Calabi–Yau theorem”, pp. 201–227 in Complex Monge–Ampère equations and geodesics in the space of Kähler metrics, edited by V. Guedj, Lecture Notes in Math. 2038, Springer, 2012.
  • I. Cheltsov and C. Shramov, “On exceptional quotient singularities”, Geom. Topol. 15:4 (2011), 1843–1882.
  • I. Cheltsov and C. Shramov, “Six-dimensional exceptional quotient singularities”, Math. Res. Lett. 18:6 (2011), 1121–1139.
  • I. Cheltsov and A. Wilson, “Del Pezzo surfaces with many symmetries”, J. Geom. Anal. 23:3 (2013), 1257–1289.
  • I. Cheltsov, J. Park, and C. Shramov, “Exceptional del Pezzo hypersurfaces”, J. Geom. Anal. 20:4 (2010), 787–816.
  • T. Darvas, “The Mabuchi geometry of finite energy classes”, Adv. Math. 285 (2015), 182–219.
  • T. Darvas, “Geometric pluripotential theory on Kähler manifolds”, preprint, 2017, https://www.math.umd.edu/~tdarvas/items/Geometric_Pluripotential_Theory.pdf.
  • T. Darvas and Y. A. Rubinstein, “Tian's properness conjectures and Finsler geometry of the space of Kähler metrics”, J. Amer. Math. Soc. 30:2 (2017), 347–387.
  • W. Y. Ding, “Remarks on the existence problem of positive Kähler–Einstein metrics”, Math. Ann. 282:3 (1988), 463–471.
  • W. Y. Ding and G. Tian, “The generalized Moser–Trudinger inequality”, pp. 57–70 in Nonlinear analysis and microlocal analysis, edited by K.-C. Chung et al., Nankai series in pure, applied mathematics and theoretical physics 2, World Scientific, Singapore, 1992.
  • V. Guedj and A. Zeriahi, “The weighted Monge–Ampère energy of quasiplurisubharmonic functions”, J. Funct. Anal. 250:2 (2007), 442–482.
  • V. Guedj, B. Kolev, and N. Yeganefar, “Kähler–Einstein fillings”, J. Lond. Math. Soc. $(2)$ 88:3 (2013), 737–760.
  • R. S. Hamilton, “Three-manifolds with positive Ricci curvature”, J. Differential Geom. 17:2 (1982), 255–306.
  • T. Jeffres, R. Mazzeo, and Y. A. Rubinstein, “Kähler–Einstein metrics with edge singularities”, Ann. of Math. $(2)$ 183:1 (2016), 95–176.
  • J. Keller, “Ricci iterations on Kähler classes”, J. Inst. Math. Jussieu 8:4 (2009), 743–768.
  • S. Kołodziej, The complex Monge–Ampère equation and pluripotential theory, Mem. Amer. Math. Soc. 840, Amer. Math. Soc., Providence, RI, 2005.
  • Y.-c. Lu, “Holomorphic mappings of complex manifolds”, J. Differential Geometry 2 (1968), 299–312.
  • T. Mabuchi, “$K$-energy maps integrating Futaki invariants”, Tohoku Math. J. $(2)$ 38:4 (1986), 575–593.
  • A. M. Nadel, “On the absence of periodic points for the Ricci curvature operator acting on the space of Kähler metrics”, pp. 277–281 in Modern methods in complex analysis (Princeton, NJ, 1992), edited by T. Bloom et al., Ann. of Math. Stud. 137, Princeton Univ. Press, 1995.
  • P. Petersen, Riemannian geometry, 3rd ed., Graduate Texts in Mathematics 171, Springer, 2016.
  • A. Pulemotov and Y. A. Rubinstein, “Ricci iteration on homogeneous spaces”, preprint, 2016. To appear in Trans. Amer. Math. Soc.
  • Y. A. Rubinstein, “The Ricci iteration and its applications”, C. R. Math. Acad. Sci. Paris 345:8 (2007), 445–448.
  • Y. A. Rubinstein, Geometric quantization and dynamical constructions on the space of Kahler metrics, Ph.D. thesis, Massachusetts Institute of Technology, 2008, https://search.proquest.com/docview/304380130.
  • Y. A. Rubinstein, “On energy functionals, Kähler–Einstein metrics, and the Moser–Trudinger–Onofri neighborhood”, J. Funct. Anal. 255:9 (2008), 2641–2660.
  • Y. A. Rubinstein, “Some discretizations of geometric evolution equations and the Ricci iteration on the space of Kähler metrics”, Adv. Math. 218:5 (2008), 1526–1565.
  • Y. A. Rubinstein, “Smooth and singular Kähler–Einstein metrics”, pp. 45–138 in Geometric and spectral analysis (Montréal), edited by P. Albin et al., Contemp. Math. 630, Amer. Math. Soc., Providence, RI, 2014.
  • G. Tian, “Kähler–Einstein metrics with positive scalar curvature”, Invent. Math. 130:1 (1997), 1–37.
  • S. T. Yau, “On the Ricci curvature of a compact Kähler manifold and the complex Monge–Ampère equation, I”, Comm. Pure Appl. Math. 31:3 (1978), 339–411.
  • A. Zeriahi, “Volume and capacity of sublevel sets of a Lelong class of plurisubharmonic functions”, Indiana Univ. Math. J. 50:1 (2001), 671–703.