Analysis & PDE

  • Anal. PDE
  • Volume 12, Number 2 (2019), 561-604.

Interpolation by conformal minimal surfaces and directed holomorphic curves

Antonio Alarcón and Ildefonso Castro-Infantes

Full-text: Access denied (no subscription detected)

However, an active subscription may be available with MSP at msp.org/apde.

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Abstract

Let M be an open Riemann surface and n 3 be an integer. We prove that on any closed discrete subset of M one can prescribe the values of a conformal minimal immersion M n . Our result also ensures jet-interpolation of given finite order, and hence, in particular, one may in addition prescribe the values of the generalized Gauss map. Furthermore, the interpolating immersions can be chosen to be complete, proper into n if the prescription of values is proper, and injective if n 5 and the prescription of values is injective. We may also prescribe the flux map of the examples.

We also show analogous results for a large family of directed holomorphic immersions M n , including null curves.

Article information

Source
Anal. PDE, Volume 12, Number 2 (2019), 561-604.

Dates
Received: 1 March 2018
Accepted: 1 May 2018
First available in Project Euclid: 9 October 2018

Permanent link to this document
https://projecteuclid.org/euclid.apde/1539050450

Digital Object Identifier
doi:10.2140/apde.2019.12.561

Mathematical Reviews number (MathSciNet)
MR3861901

Zentralblatt MATH identifier
06974523

Subjects
Primary: 53A10: Minimal surfaces, surfaces with prescribed mean curvature [See also 49Q05, 49Q10, 53C42] 32E30: Holomorphic and polynomial approximation, Runge pairs, interpolation 32H02: Holomorphic mappings, (holomorphic) embeddings and related questions 53A05: Surfaces in Euclidean space

Keywords
minimal surface directed holomorphic curve Weierstrass theorem Riemann surface Oka manifold

Citation

Alarcón, Antonio; Castro-Infantes, Ildefonso. Interpolation by conformal minimal surfaces and directed holomorphic curves. Anal. PDE 12 (2019), no. 2, 561--604. doi:10.2140/apde.2019.12.561. https://projecteuclid.org/euclid.apde/1539050450


Export citation

References

  • R. Abraham, “Transversality in manifolds of mappings”, Bull. Amer. Math. Soc. 69 (1963), 470–474.
  • R. Abraham, J. E. Marsden, and T. Ratiu, Manifolds, tensor analysis, and applications, 2nd ed., Applied Mathematical Sciences 75, Springer, 1988.
  • A. Alarcón and I. Castro-Infantes, “Complete minimal surfaces densely lying in arbitrary domains of $\mathbb R^n$”, Geom. Topol. 22:1 (2018), 571–590.
  • A. Alarcón and F. Forstnerič, “Null curves and directed immersions of open Riemann surfaces”, Invent. Math. 196:3 (2014), 733–771.
  • A. Alarcón and F. Forstnerič, “The Calabi–Yau problem, null curves, and Bryant surfaces”, Math. Ann. 363:3-4 (2015), 913–951.
  • A. Alarcón and F. J. López, “Minimal surfaces in $\mathbb R^3$ properly projecting into $\mathbb{R}^2$”, J. Differential Geom. 90:3 (2012), 351–381.
  • A. Alarcón and F. J. López, “Null curves in $\mathbb{C}^3$ and Calabi–Yau conjectures”, Math. Ann. 355:2 (2013), 429–455.
  • A. Alarcón and F. J. López, “Proper holomorphic embeddings of Riemann surfaces with arbitrary topology into $\mathbb{C}^2$”, J. Geom. Anal. 23:4 (2013), 1794–1805.
  • A. Alarcón and F. J. López, “Properness of associated minimal surfaces”, Trans. Amer. Math. Soc. 366:10 (2014), 5139–5154.
  • A. Alarcón and F. J. López, “Approximation theory for nonorientable minimal surfaces and applications”, Geom. Topol. 19:2 (2015), 1015–1062.
  • A. Alarcón, B. Drinovec Drnovšek, F. Forstnerič, and F. J. López, “Every bordered Riemann surface is a complete conformal minimal surface bounded by Jordan curves”, Proc. Lond. Math. Soc. $(3)$ 111:4 (2015), 851–886.
  • A. Alarcón, B. Drinovec Drnovšek, F. Forstnerič, and F. J. López, “Minimal surfaces in minimally convex domains”, Trans. Amer. Math. Soc.
  • A. Alarcón, I. Fernández, and F. J. López, “Harmonic mappings and conformal minimal immersions of Riemann surfaces into $\mathbb{R}^{\rm N}$”, Calc. Var. Partial Differential Equations 47:1-2 (2013), 227–242.
  • A. Alarcón, F. Forstnerič, and F. J. López, “Embedded minimal surfaces in $\mathbb{R}^n$”, Math. Z. 283:1-2 (2016), 1–24.
  • A. Alarcón, F. Forstnerič, and F. J. López, “New complex analytic methods in the study of non-orientable minimal surfaces in $\mathbb{R}^n$”, preprint, 2016. To appear in Mem. Amer. Math. Soc.
  • A. Alarcón, F. Forstnerič, and F. J. López, “Every meromorphic function is the Gauss map of a conformal minimal surface”, J. Geom. Anal. (online publication October 2017).
  • H. Behnke and K. Stein, “Entwicklung analytischer Funktionen auf Riemannschen Flächen”, Math. Ann. 120 (1949), 430–461.
  • E. Bishop, “Subalgebras of functions on a Riemann surface”, Pacific J. Math. 8 (1958), 29–50.
  • H. Cartan, “Variétés analytiques complexes et cohomologie”, pp. 41–55 in Colloque sur les fonctions de plusieurs variables (Bruxelles, 1953), Georges Thone, Liège, 1953.
  • B. Drinovec Drnovšek and F. Forstnerič, “Minimal hulls of compact sets in $\mathbb{R}^3$”, Trans. Amer. Math. Soc. 368:10 (2016), 7477–7506.
  • Y. Eliashberg and N. Mishachev, Introduction to the $h$-principle, Graduate Studies in Mathematics 48, American Mathematical Society, Providence, RI, 2002.
  • H. Florack, “Reguläre und meromorphe Funktionen auf nicht geschlossenen Riemannschen Flächen”, Schr. Math. Inst. Univ. Münster, 1948:1 (1948), 34.
  • F. Forstnerič, “The Oka principle for multivalued sections of ramified mappings”, Forum Math. 15:2 (2003), 309–328.
  • F. Forstnerič, “Holomorphic submersions from Stein manifolds”, Ann. Inst. Fourier $($Grenoble$)$ 54:6 (2004), 1913–1942.
  • F. Forstnerič, “Runge approximation on convex sets implies the Oka property”, Ann. of Math. $(2)$ 163:2 (2006), 689–707.
  • F. Forstnerič, “Oka manifolds: from Oka to Stein and back”, Ann. Fac. Sci. Toulouse Math. $(6)$ 22:4 (2013), 747–809.
  • F. Forstnerič, Stein manifolds and holomorphic mappings: the homotopy principle in complex analysis, 2nd ed., Ergebnisse der Mathematik $(3)$ 56, Springer, 2017.
  • F. Forstnerič and F. Lárusson, “Survey of Oka theory”, New York J. Math. 17A (2011), 11–38.
  • F. Forstnerič and F. Lárusson, “The parametric h-principle for minimal surfaces in $\mathbb{R}^n$ and null curves in $\mathbb{C}^n$”, preprint, 2016. To appear in Comm. Anal. Geom.
  • H. Grauert, “Approximationssätze für holomorphe Funktionen mit Werten in komplexen Rämen”, Math. Ann. 133 (1957), 139–159.
  • H. Grauert, “Analytische Faserungen über holomorph-vollständigen Räumen”, Math. Ann. 135 (1958), 263–273.
  • M. Gromov, Partial differential relations, Ergebnisse der Mathematik $(3)$ 9, Springer, 1986.
  • L. Hörmander and J. Wermer, “Uniform approximation on compact sets in $C\sp{n}$”, Math. Scand. 23 (1968), 5–21.
  • L. P. d. M. Jorge and F. Xavier, “A complete minimal surface in $\mathbb{R}\sp{3}$ between two parallel planes”, Ann. of Math. $(2)$ 112:1 (1980), 203–206.
  • F. Kutzschebauch, “Flexibility properties in complex analysis and affine algebraic geometry”, pp. 387–405 in Automorphisms in birational and affine geometry, edited by I. Cheltsov et al., Springer Proc. Math. Stat. 79, Springer, 2014.
  • F. Lárusson, “What is $\ldots$ an Oka manifold?”, Notices Amer. Math. Soc. 57:1 (2010), 50–52.
  • S. N. Mergelyan, “On the representation of functions by series of polynomials on closed sets”, Doklady Akad. Nauk SSSR $($N.S.$)$ 78 (1951), 405–408. In Russian.
  • P. W. Michor, Manifolds of differentiable mappings, Shiva Mathematics Series 3, Shiva, Nantwich, 1980.
  • T. Napier and M. Ramachandran, An introduction to Riemann surfaces, Springer, 2011.
  • R. Osserman, A survey of minimal surfaces, 2nd ed., Dover, New York, 1986.
  • C. Runge, “Zur Theorie der Analytischen Functionen”, Acta Math. 6:1 (1885), 245–248.
  • K. Weierstrauss, “Zur Theorie der eindeutigen analytischen Functionen”, Berl. Abh. 1876 (1876), 11–60.