Analysis & PDE

  • Anal. PDE
  • Volume 2, Number 3 (2009), 281-304.

Periodic stochastic Korteweg–de Vries equation with additive space-time white noise

Tadahiro Oh

Full-text: Open access

Abstract

We prove the local well-posedness of the periodic stochastic Korteweg–de Vries equation with the additive space-time white noise. To treat low regularity of the white noise in space, we consider the Cauchy problem in the Besov-type space b̂p,s(T) for s=12+, p=2+ such that sp<1. In establishing local well-posedness, we use a variant of the Bourgain space adapted to b̂p,s(T) and establish a nonlinear estimate on the second iteration on the integral formulation. The deterministic part of the nonlinear estimate also yields the local well-posedness of the deterministic KdV in M(T), the space of finite Borel measures on T.

Article information

Source
Anal. PDE, Volume 2, Number 3 (2009), 281-304.

Dates
Received: 2 January 2009
Revised: 28 August 2009
Accepted: 19 October 2009
First available in Project Euclid: 20 December 2017

Permanent link to this document
https://projecteuclid.org/euclid.apde/1513798038

Digital Object Identifier
doi:10.2140/apde.2009.2.281

Mathematical Reviews number (MathSciNet)
MR2603800

Zentralblatt MATH identifier
1190.35202

Subjects
Primary: 35Q53: KdV-like equations (Korteweg-de Vries) [See also 37K10] 60H15: Stochastic partial differential equations [See also 35R60]

Keywords
stochastic KdV white noise local well-posedness

Citation

Oh, Tadahiro. Periodic stochastic Korteweg–de Vries equation with additive space-time white noise. Anal. PDE 2 (2009), no. 3, 281--304. doi:10.2140/apde.2009.2.281. https://projecteuclid.org/euclid.apde/1513798038


Export citation

References

  • J. Bourgain, “Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations, II: The KdV-equation”, Geom. Funct. Anal. 3:3 (1993), 209–262.
  • J. Bourgain, “Periodic Korteweg–de Vries equation with measures as initial data”, Selecta Math. $($N.S.$)$ 3:2 (1997), 115–159.
  • J. Bourgain, “Nonlinear Schrödinger equations”, pp. 3–157 in Hyperbolic equations and frequency interactions (Park City, UT, 1995), edited by L. Caffarelli and E. Weinan, IAS/Park City Math. Ser. 5, Amer. Math. Soc., Providence, RI, 1999.
  • M. Christ, J. Colliander, and T. Tao, “Asymptotics, frequency modulation, and low regularity ill-posedness for canonical defocusing equations”, Amer. J. Math. 125:6 (2003), 1235–1293.
  • J. Colliander and T. Oh, “Almost sure well-posedness of the cubic nonlinear Schrödinger equation below $L^2(\mathbb{T})$”, preprint, 2009.
  • J. Colliander, M. Keel, G. Staffilani, H. Takaoka, and T. Tao, “Sharp global well-posedness for KdV and modified KdV on $\mathbb R$ and $\mathbb T$”, J. Amer. Math. Soc. 16:3 (2003), 705–749.
  • G. Da Prato, Kolmogorov equations for stochastic PDEs, Birkhäuser Verlag, Basel, 2004.
  • A. De Bouard, A. Debussche, and Y. Tsutsumi, “Periodic solutions of the Korteweg–de Vries equation driven by white noise”, SIAM J. Math. Anal. 36:3 (2004), 815–855.
  • T. Kappeler and P. Topalov, “Global wellposedness of KdV in $H\sp {-1}(\mathbb T,\mathbb R)$”, Duke Math. J. 135:2 (2006), 327–360.
  • C. E. Kenig, G. Ponce, and L. Vega, “The Cauchy problem for the Korteweg–de Vries equation in Sobolev spaces of negative indices”, Duke Math. J. 71:1 (1993), 1–21.
  • C. E. Kenig, G. Ponce, and L. Vega, “A bilinear estimate with applications to the KdV equation”, J. Amer. Math. Soc. 9:2 (1996), 573–603.
  • C. E. Kenig, G. Ponce, and L. Vega, “On the ill-posedness of some canonical dispersive equations”, Duke Math. J. 106:3 (2001), 617–633.
  • T. Oh, “Invariance of the white noise for KdV”, Comm. Math. Phys. 292:1 (2009), 217–236.
  • T. Oh, “White noise for KdV and mKdV on the circle”, preprint, 2009. To appear in RIMS Kôkyûroku Bessatsu.
  • B. Roynette, “Mouvement brownien et espaces de Besov”, Stochastics Stochastics Rep. 43:3-4 (1993), 221–260.