Analysis & PDE

  • Anal. PDE
  • Volume 2, Number 2 (2009), 159-186.

Dynamics of vortices for the complex Ginzburg–Landau equation

Evelyne Miot

Full-text: Open access


We study a complex Ginzburg–Landau equation in the plane, which has the form of a Gross–Pitaevskii equation with some dissipation added. We focus on the regime corresponding to well-prepared unitary vortices and derive their asymptotic motion law.

Article information

Anal. PDE, Volume 2, Number 2 (2009), 159-186.

Received: 21 October 2008
Accepted: 27 March 2009
First available in Project Euclid: 20 December 2017

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 35B20: Perturbations 35B40: Asymptotic behavior of solutions 35Q40: PDEs in connection with quantum mechanics 82D55: Superconductors

complex Ginzburg–Landau equation vortex dynamics


Miot, Evelyne. Dynamics of vortices for the complex Ginzburg–Landau equation. Anal. PDE 2 (2009), no. 2, 159--186. doi:10.2140/apde.2009.2.159.

Export citation


  • L. Almeida, “Threshold transition energies for Ginzburg–Landau functionals”, Nonlinearity 12:5 (1999), 1389–1414.
  • I. S. Aranson and L. Kramer, “The world of the complex Ginzburg–Landau equation”, Rev. Modern Phys. 74:1 (2002), 99–143.
  • F. Bethuel and D. Smets, “A remark on the Cauchy problem for the 2D Gross–Pitaevskii equation with nonzero degree at infinity”, Differential Integral Equations 20:3 (2007), 325–338.
  • F. Bethuel, H. Brezis, and F. Hélein, Ginzburg–Landau vortices, Progress in Nonlinear Differential Equations and their Applications 13, Birkhäuser, Boston, MA, 1994.
  • F. Bethuel, G. Orlandi, and D. Smets, “Collisions and phase-vortex interactions in dissipative Ginzburg–Landau dynamics”, Duke Math. J. 130:3 (2005), 523–614.
  • F. Bethuel, G. Orlandi, and D. Smets, “Dynamics of multiple degree Ginzburg–Landau vortices”, Comm. Math. Phys. 272:1 (2007), 229–261.
  • F. Bethuel, R. L. Jerrard, and D. Smets, “On the NLS dynamics for infinite energy vortex configurations on the plane”, Rev. Mat. Iberoam. 24:2 (2008), 671–702.
  • J. E. Colliander and R. L. Jerrard, “Vortex dynamics for the Ginzburg–Landau–Schrödinger equation”, Internat. Math. Res. Notices 7 (1998), 333–358.
  • J. E. Colliander and R. L. Jerrard, “Ginzburg–Landau vortices: weak stability and Schrödinger equation dynamics”, J. Anal. Math. 77 (1999), 129–205.
  • J. Ginibre and G. Velo, “The Cauchy problem in local spaces for the complex Ginzburg–Landau equation, II: Contraction methods”, Comm. Math. Phys. 187:1 (1997), 45–79.
  • R. L. Jerrard, “Vortex dynamics for the Ginzburg–Landau wave equation”, Calc. Var. Partial Differential Equations 9:1 (1999), 1–30.
  • R. L. Jerrard and H. M. Soner, “Dynamics of Ginzburg–Landau vortices”, Arch. Rational Mech. Anal. 142:2 (1998), 99–125.
  • R. Jerrard and D. Spirn, “Refined Jacobian estimates for Ginzburg–Landau functionals”, Indiana Univ. Math. J. 56:1 (2007), 135–186.
  • R. L. Jerrard and D. Spirn, “Refined Jacobian estimates and Gross–Pitaevsky vortex dynamics”, Arch. Ration. Mech. Anal. 190:3 (2008), 425–475.
  • M. Kurzke, C. Melcher, R. Moser, and D. Spirn, “Dynamics for Ginzburg–Landau vortices under a mixed flow”, preprint 428, Universität Bonn, SFB 611, 2008, to appear in Indiana Univ. Math. J.
  • F.-H. Lin and J. X. Xin, “On the incompressible fluid limit and the vortex motion law of the nonlinear Schrödinger equation”, Comm. Math. Phys. 200:2 (1999), 249–274.
  • E. Sandier and S. Serfaty, “A product-estimate for Ginzburg–Landau and corollaries”, J. Funct. Anal. 211:1 (2004), 219–244.
  • S. Serfaty, “Vortex collisions and energy-dissipation rates in the Ginzburg–Landau heat flow, II: The dynamics”, J. Eur. Math. Soc. 9:3 (2007), 383–426.