Analysis & PDE

  • Anal. PDE
  • Volume 7, Number 8 (2014), 1839-1850.

Boundary blow-up under Sobolev mappings

Aapo Kauranen and Pekka Koskela

Full-text: Open access

Abstract

We prove that for mappings in W1,n(n,m), continuous up to the boundary and with modulus of continuity satisfying a certain divergence condition, the image of the boundary of the unit ball has zero n-Hausdorff measure. For Hölder continuous mappings we also prove an essentially sharp generalised Hausdorff dimension estimate.

Article information

Source
Anal. PDE, Volume 7, Number 8 (2014), 1839-1850.

Dates
Received: 30 July 2013
Revised: 27 August 2014
Accepted: 22 October 2014
First available in Project Euclid: 20 December 2017

Permanent link to this document
https://projecteuclid.org/euclid.apde/1513731626

Digital Object Identifier
doi:10.2140/apde.2014.7.1839

Mathematical Reviews number (MathSciNet)
MR3318741

Zentralblatt MATH identifier
1312.26024

Subjects
Primary: 26B10: Implicit function theorems, Jacobians, transformations with several variables 26B35: Special properties of functions of several variables, Hölder conditions, etc. 46E35: Sobolev spaces and other spaces of "smooth" functions, embedding theorems, trace theorems

Keywords
Sobolev mapping Hausdorff measure modulus of continuity

Citation

Kauranen, Aapo; Koskela, Pekka. Boundary blow-up under Sobolev mappings. Anal. PDE 7 (2014), no. 8, 1839--1850. doi:10.2140/apde.2014.7.1839. https://projecteuclid.org/euclid.apde/1513731626


Export citation

References

  • K. Astala, T. Iwaniec, and G. Martin, Elliptic partial differential equations and quasiconformal mappings in the plane, Princeton Mathematical Series 48, Princeton University Press, NJ, 2009.
  • \relax minus 2pt S. M. Buckley, “Space-filling curves and related functions”, Irish Math. Soc. Bull. 36 (1996), 9–18.
  • H. Federer, Geometric measure theory, Die Grundlehren der mathematischen Wissenschaften 153, Springer, New York, 1969.
  • F. W. Gehring and J. Väisälä, “Hausdorff dimension and quasiconformal mappings”, J. London Math. Soc. $(2)$ 6 (1973), 504–512.
  • S. Hencl, P. Koskela, and T. Nieminen, “Dimension gap under conformal mappings”, Adv. Math. 230:3 (2012), 1423–1441.
  • D. A. Herron and P. Koskela, “Mappings of finite distortion: gauge dimension of generalized quasicircles”, Illinois J. Math. 47:4 (2003), 1243–1259.
  • J. D. Howroyd, On the theory of Hausdorff measures in metric spaces, Ph.D. thesis, University College London, 1994, http://smithsold.gold.ac.uk/jhowroyd/jdhthesis.pdf.
  • P. W. Jones and N. G. Makarov, “Density properties of harmonic measure”, Ann. of Math. $(2)$ 142:3 (1995), 427–455.
  • P. Koskela and S. Rohde, “Hausdorff dimension and mean porosity”, Math. Ann. 309:4 (1997), 593–609.
  • P. Koskela and A. Zapadinskaya, “Dimension gap under Sobolev mappings”, preprint, 2014.
  • P. Koskela, A. Zapadinskaya, and T. Zürcher, “Generalized dimension distortion under planar Sobolev homeomorphisms”, Proc. Amer. Math. Soc. 137:11 (2009), 3815–3821.
  • J. Malý and O. Martio, “Lusin's condition (N) and mappings of the class $W\sp {1,n}$”, J. Reine Angew. Math. 458 (1995), 19–36.
  • T. Nieminen, “Generalized mean porosity and dimension”, Ann. Acad. Sci. Fenn. Math. 31:1 (2006), 143–172.
  • E. M. Stein, Singular integrals and differentiability properties of functions, Princeton Mathematical Series 30, Princeton University Press, Princeton, N.J., 1970.