Analysis & PDE

Angular energy quantization for linear elliptic systems with antisymmetric potentials and applications

Paul Laurain and Tristan Rivière

Full-text: Open access

Abstract

We establish a quantization result for the angular part of the energy of solutions to elliptic linear systems of Schrödinger type with antisymmetric potentials in two dimensions. This quantization is a consequence of uniform Lorentz–Wente type estimates in degenerating annuli. Moreover this result is optimal in the sense that we exhibit a sequence of functions satisfying our hypothesis whose radial part of the energy is not quantized. We derive from this angular quantization the full energy quantization for general critical points to functionals which are conformally invariant or also for pseudoholomorphic curves on degenerating Riemann surfaces.

Article information

Source
Anal. PDE, Volume 7, Number 1 (2014), 1-41.

Dates
Received: 1 December 2011
Revised: 7 February 2013
Accepted: 3 April 2013
First available in Project Euclid: 20 December 2017

Permanent link to this document
https://projecteuclid.org/euclid.apde/1513731464

Digital Object Identifier
doi:10.2140/apde.2014.7.1

Mathematical Reviews number (MathSciNet)
MR3219498

Zentralblatt MATH identifier
1295.35204

Subjects
Primary: 35J20: Variational methods for second-order elliptic equations 35J60: Nonlinear elliptic equations 53C42: Immersions (minimal, prescribed curvature, tight, etc.) [See also 49Q05, 49Q10, 53A10, 57R40, 57R42] 58E20: Harmonic maps [See also 53C43], etc. 35J47: Second-order elliptic systems
Secondary: 49Q05: Minimal surfaces [See also 53A10, 58E12] 53C21: Methods of Riemannian geometry, including PDE methods; curvature restrictions [See also 58J60] 32Q65: Pseudoholomorphic curves

Keywords
analysis of PDEs differential geometry

Citation

Laurain, Paul; Rivière, Tristan. Angular energy quantization for linear elliptic systems with antisymmetric potentials and applications. Anal. PDE 7 (2014), no. 1, 1--41. doi:10.2140/apde.2014.7.1. https://projecteuclid.org/euclid.apde/1513731464


Export citation

References

  • D. R. Adams, “A note on Riesz potentials”, Duke Math. J. 42:4 (1975), 765–778.
  • R. A. Adams and J. J. F. Fournier, Sobolev spaces, 2nd ed., Pure and Applied Mathematics 140, Elsevier, Amsterdam, 2003.
  • Y. Bernard and T. Rivière, “Energy quantization for Willmore surfaces and applications”, preprint, 2011.
  • F. Bethuel, “Un résultat de régularité pour les solutions de l'équation de surfaces à courbure moyenne prescrite”, C. R. Acad. Sci. Paris Sér. I Math. 314:13 (1992), 1003–1007.
  • F. Bethuel and O. Rey, “Multiple solutions to the Plateau problem for nonconstant mean curvature”, Duke Math. J. 73:3 (1994), 593–646.
  • P. Caldiroli and R. Musina, “The Dirichlet problem for $H$-systems with small boundary data: blowup phenomena and nonexistence results”, Arch. Ration. Mech. Anal. 181:1 (2006), 1–42.
  • R. Coifman, P.-L. Lions, Y. Meyer, and S. Semmes, “Compensated compactness and Hardy spaces”, J. Math. Pures Appl. $(9)$ 72:3 (1993), 247–286.
  • F. Da Lio, “Energy quantization for half-harmonic maps into spheres”, preprint, 2011. To appear in Ann. Henri Poincaré.
  • W. Ding and G. Tian, “Energy identity for a class of approximate harmonic maps from surfaces”, Comm. Anal. Geom. 3:3-4 (1995), 543–554.
  • Y. Ge, “Estimations of the best constant involving the $L\sp 2$ norm in Wente's inequality and compact $H$-surfaces in Euclidean space”, ESAIM Control Optim. Calc. Var. 3 (1998), 263–300.
  • L. Grafakos, Classical Fourier analysis, 2nd ed., Graduate Texts in Mathematics 249, Springer, New York, 2009.
  • M. Gromov, “Pseudo holomorphic curves in symplectic manifolds”, Invent. Math. 82:2 (1985), 307–347.
  • Q. Han and F.-H. Lin, Elliptic partial differential equations, 2nd ed., Courant Lecture Notes in Mathematics 1, Courant Institute of Mathematical Sciences, New York, 2011.
  • F. Hélein, Applications harmoniques, lois de conservation et repères mobiles, Diderot, Paris, 1996. Translated as “Harmonic maps, conservation laws and moving frames”, 2nd ed., Cambridge Tracts in Mathematics 150, Cambridge University Press, 2002.
  • J. H. Hubbard, Teichmüller theory and applications to geometry, topology, and dynamics, 1: Teichmüller theory, Matrix Editions, Ithaca, NY, 2006.
  • C. Hummel, Gromov's compactness theorem for pseudo-holomorphic curves, Progress in Mathematics 151, Birkhäuser, Basel, 1997.
  • J. Jost, Two-dimensional geometric variational problems, Wiley, Chichester, 1991.
  • P. Laurain and T. Rivière, “Quantification for fourth order elliptic system”, 2011. In preparation.
  • F.-H. Lin and T. Rivière, “A quantization property for static Ginzburg–Landau vortices”, Comm. Pure Appl. Math. 54:2 (2001), 206–228.
  • F.-H. Lin and T. Rivière, “Energy quantization for harmonic maps”, Duke Math. J. 111:1 (2002), 177–193.
  • F.-H. Lin and C.-Y. Wang, “Energy identity of harmonic map flows from surfaces at finite singular time”, Calc. Var. Partial Differential Equations 6:4 (1998), 369–380.
  • D. McDuff and D. Salamon, $J$-holomorphic curves and symplectic topology, Amer. Math. Soc. Colloquium Publications 52, Amer. Math. Soc., Providence, RI, 2004.
  • T. H. Parker, “Bubble tree convergence for harmonic maps”, J. Differential Geom. 44:3 (1996), 595–633.
  • T. H. Parker and J. G. Wolfson, “Pseudo-holomorphic maps and bubble trees”, J. Geom. Anal. 3:1 (1993), 63–98.
  • T. Rivière, “Bubbling and regularity issues in geometric non-linear analysis”, pp. 197–208 in Proceedings of the International Congress of Mathematicians (Beijing, 2002), vol. III, edited by T. T. Li et al., Higher Education Press, Beijing, 2002.
  • T. Rivière, “Conservation laws for conformally invariant variational problems”, Invent. Math. 168:1 (2007), 1–22.
  • T. Rivière, “Analysis aspects of Willmore surfaces”, Invent. Math. 174:1 (2008), 1–45.
  • T. Rivière, “Conformally invariant two-dimensional variational problems”, preprint, Cours joint de l'Institut Henri Poincaré et Paris XII-Créteil, November 2010.
  • T. Rivière, “Variational principles for immersed surfaces with $L^2$-bounded second fundamental form”, J. Reine Angew. Math.. In press.
  • J. Sacks and K. Uhlenbeck, “The existence of minimal immersions of $2$-spheres”, Ann. of Math. $(2)$ 113:1 (1981), 1–24.
  • B. Sharp and P. Topping, “Decay estimates for Rivière's equation, with applications to regularity and compactness”, Trans. Amer. Math. Soc. 365:5 (2013), 2317–2339.
  • J.-C. Sikorav, “Some properties of holomorphic curves in almost complex manifolds”, pp. 165–189 in Holomorphic curves in symplectic geometry, edited by M. Audin and J. Lafontaine, Progress in Mathematics 117, Birkhäuser, Basel, 1994.
  • E. M. Stein, Singular integrals and differentiability properties of functions, Princeton Mathematical Series 30, Princeton University Press, 1970.
  • E. M. Stein and G. Weiss, Introduction to Fourier analysis on Euclidean spaces, Princeton Mathematical Series 32, Princeton University Press, 1971.
  • M. Struwe, “On the evolution of harmonic mappings of Riemannian surfaces”, Comment. Math. Helv. 60:4 (1985), 558–581.
  • L. Tartar, “Remarks on oscillations and Stokes' equation”, pp. 24–31 in Macroscopic modelling of turbulent flows (Nice, 1984), edited by U. Frisch et al., Lecture Notes in Phys. 230, Springer, Berlin, 1985.
  • P. Topping, “The optimal constant in Wente's $L\sp \infty$ estimate”, Comment. Math. Helv. 72:2 (1997), 316–328.
  • H. C. Wente, “An existence theorem for surfaces of constant mean curvature”, J. Math. Anal. Appl. 26 (1969), 318–344.
  • M. Zhu, “Harmonic maps from degenerating Riemann surfaces”, Math. Z. 264:1 (2010), 63–85.
  • W. P. Ziemer, Weakly differentiable functions: Sobolev spaces and functions of bounded variation, Graduate Texts in Mathematics 120, Springer, New York, 1989.