Analysis & PDE

  • Anal. PDE
  • Volume 6, Number 7 (2013), 1601-1648.

Carleman estimates for anisotropic elliptic operators with jumps at an interface

Jérôme Le Rousseau and Nicolas Lerner

Full-text: Open access


We consider a second-order self-adjoint elliptic operator with an anisotropic diffusion matrix having a jump across a smooth hypersurface. We prove the existence of a weight function such that a Carleman estimate holds true. We also prove that the conditions imposed on the weight function are sharp.

Article information

Anal. PDE, Volume 6, Number 7 (2013), 1601-1648.

Received: 31 January 2012
Revised: 8 March 2013
Accepted: 13 April 2013
First available in Project Euclid: 20 December 2017

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 35J15: Second-order elliptic equations 35J57: Boundary value problems for second-order elliptic systems 35J75: Singular elliptic equations

Carleman estimate elliptic operator nonsmooth coefficient quasimode


Le Rousseau, Jérôme; Lerner, Nicolas. Carleman estimates for anisotropic elliptic operators with jumps at an interface. Anal. PDE 6 (2013), no. 7, 1601--1648. doi:10.2140/apde.2013.6.1601.

Export citation


  • S. Alinhac, “Non-unicité pour des opérateurs différentiels à caractéristiques complexes simples”, Ann. Sci. École Norm. Sup. $(4)$ 13:3 (1980), 385–393.
  • S. Alinhac and P. Gérard, Pseudo-differential operators and the Nash–Moser theorem, Graduate Studies in Mathematics 82, Amer. Math. Soc., Providence, RI, 2007.
  • H. Bahouri, “Dépendance non linéaire des données de Cauchy pour les solutions des équations aux dérivées partielles”, J. Math. Pures Appl. $(9)$ 66:2 (1987), 127–138.
  • V. Barbu, “Exact controllability of the superlinear heat equation”, Appl. Math. Optim. 42:1 (2000), 73–89.
  • C. Bardos, G. Lebeau, and J. Rauch, “Sharp sufficient conditions for the observation, control, and stabilization of waves from the boundary”, SIAM J. Control Optim. 30:5 (1992), 1024–1065.
  • A. Benabdallah, Y. Dermenjian, and J. Le Rousseau, “Carleman estimates for the one-dimensional heat equation with a discontinuous coefficient and applications to controllability and an inverse problem”, J. Math. Anal. Appl. 336:2 (2007), 865–887.
  • A. Benabdallah, Y. Dermenjian, and J. Le Rousseau, “Carleman estimates for stratified media”, J. Funct. Anal. 260:12 (2011), 3645–3677.
  • A. L. Bukhgeim and M. V. Klibanov, “Global uniqueness of class of multidimensional inverse problems”, Sov. Math. Dokl. 24 (1981), 244–247.
  • P. Buonocore and P. Manselli, “Nonunique continuation for plane uniformly elliptic equations in Sobolev spaces”, Ann. Scuola Norm. Sup. Pisa Cl. Sci. $(4)$ 29:4 (2000), 731–754.
  • N. Burq, “Décroissance de l'énergie locale de l'équation des ondes pour le problème extérieur et absence de résonance au voisinage du réel”, Acta Math. 180:1 (1998), 1–29.
  • A.-P. Calderón, “Uniqueness in the Cauchy problem for partial differential equations”, Amer. J. Math. 80 (1958), 16–36.
  • T. Carleman, “Sur un problème d'unicité pur les systèmes d'équations aux dérivées partielles à deux variables indépendantes”, Ark. Mat., Astr. Fys. 26:17 (1939), 9.
  • A. Doubova, A. Osses, and J.-P. Puel, “Exact controllability to trajectories for semilinear heat equations with discontinuous diffusion coefficients”, ESAIM Control Optim. Calc. Var. 8 (2002), 621–661.
  • E. Fernández-Cara and E. Zuazua, “Null and approximate controllability for weakly blowing up semilinear heat equations”, Ann. Inst. H. Poincaré Anal. Non Linéaire 17:5 (2000), 583–616.
  • N. Filonov, “Second-order elliptic equation of divergence form having a compactly supported solution”, J. Math. Sci. $($New York$)$ 106:3 (2001), 3078–3086.
  • A. V. Fursikov and O. Y. Imanuvilov, Controllability of evolution equations, Lecture Notes Series 34, Seoul National University, Seoul, 1996.
  • L. H örmander, “On the uniqueness of the Cauchy problem”, Math. Scand. 6 (1958), 213–225.
  • L. H örmander, Linear partial differential operators, Die Grundlehren der mathematischen Wissenschaften 116, Academic, New York, 1963.
  • L. H örmander, The analysis of linear partial differential operators, III: Pseudodifferential operators, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences] 274, Springer, Berlin, 1985.
  • L. H örmander, The analysis of linear partial differential operators, IV: Fourier integral operators, Grundlehren der Mathematischen Wissenschaften 275, Springer, Berlin, 1985.
  • O. Y. Imanuvilov and J.-P. Puel, “Global Carleman estimates for weak solutions of elliptic nonhomogeneous Dirichlet problems”, Int. Math. Res. Not. 2003:16 (2003), 883–913.
  • O. Imanuvilov, V. Isakov, and M. Yamamoto, “An inverse problem for the dynamical Lamé system with two sets of boundary data”, Comm. Pure Appl. Math. 56:9 (2003), 1366–1382.
  • V. Isakov, Inverse problems for partial differential equations, Applied Mathematical Sciences 127, Springer, New York, 1998.
  • D. Jerison and C. E. Kenig, “Unique continuation and absence of positive eigenvalues for Schrödinger operators”, Ann. of Math. $(2)$ 121:3 (1985), 463–494.
  • D. Jerison and G. Lebeau, “Nodal sets of sums of eigenfunctions”, pp. 223–239 in Harmonic analysis and partial differential equations (Chicago, 1996), edited by M. Christ et al., University of Chicago Press, Chicago, 1999.
  • F. John, “Continuous dependence on data for solutions of partial differential equations with a presribed bound”, Comm. Pure Appl. Math. 13 (1960), 551–585.
  • C. E. Kenig, J. Sj östrand, and G. Uhlmann, “The Calderón problem with partial data”, Ann. of Math. $(2)$ 165:2 (2007), 567–591.
  • H. Koch and D. Tataru, “Carleman estimates and unique continuation for second-order elliptic equations with nonsmooth coefficients”, Comm. Pure Appl. Math. 54:3 (2001), 339–360.
  • H. Koch and D. Tataru, “Sharp counterexamples in unique continuation for second order elliptic equations”, J. Reine Angew. Math. 542 (2002), 133–146.
  • J. Le Rousseau, “Carleman estimates and controllability results for the one-dimensional heat equation with BV coefficients”, J. Differential Equations 233:2 (2007), 417–447.
  • J. Le Rousseau and G. Lebeau, “On Carleman estimates for elliptic and parabolic operators: Applications to unique continuation and control of parabolic equations”, ESAIM Control Optim. Calc. Var. 18:3 (2012), 712–747.
  • J. Le Rousseau and L. Robbiano, “Carleman estimate for elliptic operators with coefficients with jumps at an interface in arbitrary dimension and application to the null controllability of linear parabolic equations”, Arch. Ration. Mech. Anal. 195:3 (2010), 953–990.
  • J. Le Rousseau and L. Robbiano, “Local and global Carleman estimates for parabolic operators with coefficients with jumps at interfaces”, Invent. Math. 183:2 (2011), 245–336.
  • G. Lebeau, “Équation des ondes amorties”, pp. 73–109 in Algebraic and geometric methods in mathematical physics (Kaciveli, 1993), edited by A. Boutet de Monvel and V. Marchenko, Math. Phys. Stud. 19, Kluwer, Dordrecht, 1996.
  • G. Lebeau and L. Robbiano, “Contrôle exact de l'équation de la chaleur”, Comm. Partial Differential Equations 20:1-2 (1995), 335–356.
  • G. Lebeau and L. Robbiano, “Stabilisation de l'équation des ondes par le bord”, Duke Math. J. 86:3 (1997), 465–491.
  • G. Lebeau and E. Zuazua, “Null-controllability of a system of linear thermoelasticity”, Arch. Rational Mech. Anal. 141:4 (1998), 297–329.
  • N. Lerner, Metrics on the phase space and non-selfadjoint pseudo-differential operators, Pseudo-Differential Operators: Theory and Applications 3, Birkhäuser, Basel, 2010.
  • N. Mandache, “On a counterexample concerning unique continuation for elliptic equations in divergence form”, Math. Phys. Anal. Geom. 1:3 (1998), 273–292.
  • K. Miller, “Nonunique continuation for uniformly parabolic and elliptic equations in self-adjoint divergence form with Hölder continuous coefficients”, Arch. Rational Mech. Anal. 54 (1974), 105–117.
  • A. Pliś, “On non-uniqueness in Cauchy problem for an elliptic second order differential equation”, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 11 (1963), 95–100.
  • J. Rauch and M. Taylor, “Exponential decay of solutions to hyperbolic equations in bounded domains”, Indiana Univ. Math. J. 24 (1974), 79–86.
  • F. Schulz, “On the unique continuation property of elliptic divergence form equations in the plane”, Math. Z. 228:2 (1998), 201–206.
  • C. D. Sogge, “Oscillatory integrals and unique continuation for second order elliptic differential equations”, J. Amer. Math. Soc. 2:3 (1989), 491–515.