Analysis & PDE

  • Anal. PDE
  • Volume 5, Number 5 (2012), 1157-1173.

Nonlinear Schrödinger equation and frequency saturation

Rémi Carles

Full-text: Open access


We propose an approach that permits to avoid instability phenomena for the nonlinear Schrödinger equations. We show that by approximating the solution in a suitable way, relying on a frequency cut-off, global well-posedness is obtained in any Sobolev space with nonnegative regularity. The error between the exact solution and its approximation can be measured according to the regularity of the exact solution, with different accuracy according to the cases considered.

Article information

Anal. PDE, Volume 5, Number 5 (2012), 1157-1173.

Received: 8 December 2011
Revised: 15 February 2012
Accepted: 20 March 2012
First available in Project Euclid: 20 December 2017

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 35Q55: NLS-like equations (nonlinear Schrödinger) [See also 37K10]
Secondary: 35A01: Existence problems: global existence, local existence, non-existence 35B30: Dependence of solutions on initial and boundary data, parameters [See also 37Cxx] 35B45: A priori estimates 35B65: Smoothness and regularity of solutions

nonlinear Schrödinger equation well-posedness approximation


Carles, Rémi. Nonlinear Schrödinger equation and frequency saturation. Anal. PDE 5 (2012), no. 5, 1157--1173. doi:10.2140/apde.2012.5.1157.

Export citation


  • T. Alazard and R. Carles, “Loss of regularity for supercritical nonlinear Schrödinger equations”, Math. Ann. 343:2 (2009), 397–420.
  • I. Bejenaru and T. Tao, “Sharp well-posedness and ill-posedness results for a quadratic non-linear Schrödinger equation”, J. Funct. Anal. 233:1 (2006), 228–259.
  • N. Burq, “Large-time dynamics for the one-dimensional Schrödinger equation”, Proc. Roy. Soc. Edinburgh Sect. A 141:2 (2011), 227–251.
  • N. Burq and N. Tzvetkov, “Random data Cauchy theory for supercritical wave equations. I. Local theory”, Invent. Math. 173:3 (2008), 449–475.
  • N. Burq and N. Tzvetkov, “Random data Cauchy theory for supercritical wave equations. II. A global existence result”, Invent. Math. 173:3 (2008), 477–496.
  • N. Burq, P. Gérard, and N. Tzvetkov, “Multilinear eigenfunction estimates and global existence for the three dimensional nonlinear Schrödinger equations”, Ann. Sci. École Norm. Sup. $(4)$ 38:2 (2005), 255–301.
  • N. Burq, L. Thomann, and N. Tzvetkov, “Long time dynamics for the one dimensional non linear Schrödinger equation”, preprint, 2012. To appear in Ann. Inst. Fourier.
  • R. Carles, “Geometric optics and instability for semi-classical Schrödinger equations”, Arch. Ration. Mech. Anal. 183:3 (2007), 525–553.
  • R. Carles, “On Schrödinger equations with modified dispersion”, Dyn. Partial Differ. Equ. 8:3 (2011), 173–183.
  • R. Carles, E. Dumas, and C. Sparber, “Geometric optics and instability for NLS and Davey–Stewartson models”, J. Eur. Math. Soc. 14:6 (2012), 1885–1921.
  • T. Cazenave, Semilinear Schrödinger equations, Courant Lecture Notes in Mathematics 10, Courant Institute of Mathematical Sciences, New York, 2003.
  • T. Cazenave and F. B. Weissler, “The Cauchy problem for the critical nonlinear Schrödinger equation in $H\sp s$”, Nonlinear Anal. 14:10 (1990), 807–836.
  • T. Cazenave, D. Fang, and Z. Han, “Continuous dependence for NLS in fractional order spaces”, Ann. Inst. H. Poincaré Anal. Non Linéaire 28:1 (2011), 135–147.
  • M. Christ, J. Colliander, and T. Tao, “Ill-posedness for nonlinear Schrödinger and wave equations”, preprint, 2003.
  • J. Colliander, M. Keel, G. Staffilani, H. Takaoka, and T. Tao, “Almost conservation laws and global rough solutions to a nonlinear Schrödinger equation”, Math. Res. Lett. 9:5-6 (2002), 659–682.
  • A. Debussche and E. Faou, “Modified energy for split-step methods applied to the linear Schrödinger equation”, SIAM J. Numer. Anal. 47:5 (2009), 3705–3719.
  • J. Ginibre and G. Velo, “On the global Cauchy problem for some nonlinear Schrödinger equations”, Ann. Inst. H. Poincaré Anal. Non Linéaire 1:4 (1984), 309–323.
  • L. I. Ignat and E. Zuazua, “Convergence rates for dispersive approximation schemes to nonlinear Schrödinger equations”, J. Math. Pures Appl. $(9)$ 98:5 (2012), 479–517.
  • T. Kato, “On nonlinear Schrödinger equations”, Ann. Inst. H. Poincaré Phys. Théor. 46:1 (1987), 113–129.
  • C. E. Kenig, G. Ponce, and L. Vega, “On the ill-posedness of some canonical dispersive equations”, Duke Math. J. 106:3 (2001), 617–633.
  • D. Lannes, “High-frequency nonlinear optics: from the nonlinear Schrödinger approximation to ultrashort-pulses equations”, Proc. Roy. Soc. Edinburgh Sect. A 141:2 (2011), 253–286.
  • G. Lebeau, “Non linear optic and supercritical wave equation”, Bull. Soc. Roy. Sci. Liège 70:4-6 (2001), 267–306.
  • G. Lebeau, “Perte de régularité pour les équations d'ondes sur-critiques”, Bull. Soc. Math. France 133:1 (2005), 145–157.
  • G. Métivier, “Exemples d'instabilités pour des équations d'ondes non linéaires (d'après G. Lebeau)”, pp. vii, 63–75 in Séminaire Bourbaki $2002/2003$ (Exposé 911), Astérisque 294, Société Mathématique de France, Paris, 2004.
  • C. Sulem and P.-L. Sulem, The nonlinear Schrödinger equation: Self-focusing and wave collapse, Applied Mathematical Sciences 139, Springer, New York, 1999.
  • L. Thomann, “Instabilities for supercritical Schrödinger equations in analytic manifolds”, J. Differential Equations 245:1 (2008), 249–280.
  • Y. Tsutsumi, “$L\sp 2$-solutions for nonlinear Schrödinger equations and nonlinear groups”, Funkcial. Ekvac. 30:1 (1987), 115–125.