Analysis & PDE

  • Anal. PDE
  • Volume 5, Number 4 (2012), 855-885.

Global well-posedness and scattering for the defocusing quintic NLS in three dimensions

Rowan Killip and Monica Vişan

Full-text: Open access

Abstract

We revisit the proof of global well-posedness and scattering for the defocusing energy-critical NLS in three space dimensions in light of recent developments. This result was obtained previously by Colliander, Keel, Staffilani, Takaoka, and Tao.

Article information

Source
Anal. PDE, Volume 5, Number 4 (2012), 855-885.

Dates
Received: 5 March 2011
Revised: 12 May 2011
Accepted: 11 June 2011
First available in Project Euclid: 20 December 2017

Permanent link to this document
https://projecteuclid.org/euclid.apde/1513731247

Digital Object Identifier
doi:10.2140/apde.2012.5.855

Mathematical Reviews number (MathSciNet)
MR3006644

Zentralblatt MATH identifier
1264.35219

Subjects
Primary: 35Q55: NLS-like equations (nonlinear Schrödinger) [See also 37K10]

Keywords
energy critical nonlinear Schrödinger

Citation

Killip, Rowan; Vişan, Monica. Global well-posedness and scattering for the defocusing quintic NLS in three dimensions. Anal. PDE 5 (2012), no. 4, 855--885. doi:10.2140/apde.2012.5.855. https://projecteuclid.org/euclid.apde/1513731247


Export citation

References

  • J. Bourgain, “Global wellposedness of defocusing critical nonlinear Schrödinger equation in the radial case”, J. Amer. Math. Soc. 12:1 (1999), 145–171.
  • J. Colliander, M. Keel, G. Staffilani, H. Takaoka, and T. Tao, “Global existence and scattering for rough solutions of a nonlinear Schrödinger equation on $\mathbb R\sp 3$”, Comm. Pure Appl. Math. 57:8 (2004), 987–1014.
  • J. Colliander, M. Keel, G. Staffilani, H. Takaoka, and T. Tao, “Global well-posedness and scattering for the energy-critical nonlinear Schrödinger equation in $\mathbb R\sp 3$”, Ann. of Math. $(2)$ 167:3 (2008), 767–865.
  • B. Dodson, “Global well-posedness and scattering for the defocusing, $L^{2}$-critical, nonlinear Schrödinger equation when $d = 1$”, preprint, 2011.
  • B. Dodson, “Global well-posedness and scattering for the defocusing, $L^{2}$-critical, nonlinear Schrödinger equation when $d = 2$”, preprint, 2011.
  • B. Dodson, “Global well-posedness and scattering for the defocusing, $L\sp {2}$-critical nonlinear Schrödinger equation when $d\geq3$”, J. Amer. Math. Soc. 25:2 (2012), 429–463.
  • J. Ginibre and G. Velo, “Smoothing properties and retarded estimates for some dispersive evolution equations”, Comm. Math. Phys. 144:1 (1992), 163–188.
  • M. Keel and T. Tao, “Endpoint Strichartz estimates”, Amer. J. Math. 120:5 (1998), 955–980. http://www.ams.org/mathscinet-getitem?mr=2000d:35018MR 2000d:35018
  • C. E. Kenig and F. Merle, “Global well-posedness, scattering and blow-up for the energy-critical, focusing, non-linear Schrödinger equation in the radial case”, Invent. Math. 166:3 (2006), 645–675.
  • S. Keraani, “On the blow up phenomenon of the critical nonlinear Schrödinger equation”, J. Funct. Anal. 235:1 (2006), 171–192.
  • R. Killip and M. Vi\commaaccentsan, “Nonlinear Schrödinger equations at critical regularity”, preprint, Clay Mathematics Institute Summer School, Zürich, 2008, http://www.claymath.org/programs/summer_school/2008/visan.pdf.
  • R. Killip and M. Vi\commaaccentsan, “The focusing energy-critical nonlinear Schrödinger equation in dimensions five and higher”, Amer. J. Math. 132:2 (2010), 361–424.
  • R. Killip, T. Tao, and M. Vi\commaaccentsan, “The cubic nonlinear Schrödinger equation in two dimensions with radial data”, J. Eur. Math. Soc. $($JEMS$)$ 11:6 (2009), 1203–1258.
  • J. E. Lin and W. A. Strauss, “Decay and scattering of solutions of a nonlinear Schrödinger equation”, J. Funct. Anal. 30:2 (1978), 245–263.
  • C. S. Morawetz, Notes on time decay and scattering for some hyperbolic problems, Regional Conference Series in Applied Mathematics 19, Society for Industrial and Applied Mathematics, Philadelphia, 1975.
  • K. Nakanishi, “Scattering theory for the nonlinear Klein–Gordon equation with Sobolev critical power”, Internat. Math. Res. Notices 1999:1 (1999), 31–60.
  • E. Ryckman and M. Vi\commaaccentsan, “Global well-posedness and scattering for the defocusing energy-critical nonlinear Schrödinger equation in $\mathbb R\sp {1+4}$”, Amer. J. Math. 129:1 (2007), 1–60.
  • R. S. Strichartz, “Restrictions of Fourier transforms to quadratic surfaces and decay of solutions of wave equations”, Duke Math. J. 44:3 (1977), 705–714.
  • T. Tao, “Global well-posedness and scattering for the higher-dimensional energy-critical nonlinear Schrödinger equation for radial data”, New York J. Math. 11 (2005), 57–80.
  • T. Tao, M. Vi\commaaccentsan, and X. Zhang, “Global well-posedness and scattering for the defocusing mass-critical nonlinear Schrödinger equation for radial data in high dimensions”, Duke Math. J. 140:1 (2007), 165–202.
  • T. Tao, M. Vi\commaaccentsan, and X. Zhang, “Minimal-mass blowup solutions of the mass-critical NLS”, Forum Math. 20:5 (2008), 881–919.
  • M. Vi\commaaccentsan, “The defocusing energy-critical nonlinear Schrödinger equation in higher dimensions”, Duke Math. J. 138:2 (2007), 281–374.
  • M. Vi\commaaccentsan, “Global well-posedness and scattering for the defocusing cubic nonlinear Schrödinger equation in four dimensions”, Internat. Math. Res. Notices 2012:5 (2012), 1037–1067.
  • A. Zygmund, Trigonometric series, I, II, 3rd ed., Cambridge University Press, Cambridge, 2002. http://www.ams.org/mathscinet-getitem?mr=2004h:01041MR 2004h:01041