Analysis & PDE

  • Anal. PDE
  • Volume 5, Number 4 (2012), 705-746.

On the global well-posedness of energy-critical Schrödinger equations in curved spaces

Alexandru Ionescu, Benoit Pausader, and Gigliola Staffilani

Full-text: Open access

Abstract

In this paper we present a method to study global regularity properties of solutions of large-data critical Schrödinger equations on certain noncompact Riemannian manifolds. We rely on concentration compactness arguments and a global Morawetz inequality adapted to the geometry of the manifold (in other words we adapt the method of Kenig and Merle to the variable coefficient case), and a good understanding of the corresponding Euclidean problem (a theorem of Colliander, Keel, Staffilani, Takaoka and Tao).

As an application we prove global well-posedness and scattering in H1 for the energy-critical defocusing initial-value problem

( i t + Δ g ) u = u | u | 4 , u ( 0 ) = ϕ ,

on hyperbolic space 3.

Article information

Source
Anal. PDE, Volume 5, Number 4 (2012), 705-746.

Dates
Received: 5 August 2010
Accepted: 1 April 2011
First available in Project Euclid: 20 December 2017

Permanent link to this document
https://projecteuclid.org/euclid.apde/1513731243

Digital Object Identifier
doi:10.2140/apde.2012.5.705

Mathematical Reviews number (MathSciNet)
MR3006640

Zentralblatt MATH identifier
1264.35215

Subjects
Primary: 35Q55: NLS-like equations (nonlinear Schrödinger) [See also 37K10]

Keywords
global well-posedness energy-critical defocusing NLS nonlinear Schrödinger equation induction on energy

Citation

Ionescu, Alexandru; Pausader, Benoit; Staffilani, Gigliola. On the global well-posedness of energy-critical Schrödinger equations in curved spaces. Anal. PDE 5 (2012), no. 4, 705--746. doi:10.2140/apde.2012.5.705. https://projecteuclid.org/euclid.apde/1513731243


Export citation

References

  • J.-P. Anker and V. Pierfelice, “Nonlinear Schrödinger equation on real hyperbolic spaces”, Ann. Inst. H. Poincaré Anal. Non Linéaire 26:5 (2009), 1853–1869.
  • H. Bahouri and P. Gérard, “High frequency approximation of solutions to critical nonlinear wave equations”, Amer. J. Math. 121:1 (1999), 131–175.
  • H. Bahouri and J. Shatah, “Decay estimates for the critical semilinear wave equation”, Ann. Inst. H. Poincaré Anal. Non Linéaire 15:6 (1998), 783–789.
  • V. Banica, “The nonlinear Schrödinger equation on hyperbolic space”, Comm. Partial Differential Equations 32:10-12 (2007), 1643–1677.
  • V. Banica and T. Duyckaerts, “Weighted Strichartz estimates for radial Schrödinger equation on noncompact manifolds”, Dyn. Partial Differ. Equ. 4:4 (2007), 335–359.
  • V. Banica, R. Carles, and G. Staffilani, “Scattering theory for radial nonlinear Schrödinger equations on hyperbolic space”, Geom. Funct. Anal. 18:2 (2008), 367–399.
  • V. Banica, R. Carles, and T. Duyckaerts, “On scattering for NLS: from Euclidean to hyperbolic space”, Discrete Contin. Dyn. Syst. 24:4 (2009), 1113–1127.
  • J.-M. Bouclet, “Strichartz estimates on asymptotically hyperbolic manifolds”, Anal. PDE 4:1 (2011), 1–84.
  • J. Bourgain, “Exponential sums and nonlinear Schrödinger equations”, Geom. Funct. Anal. 3:2 (1993), 157–178.
  • J. Bourgain, “Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations, I: Schrödinger equations”, Geom. Funct. Anal. 3:2 (1993), 107–156.
  • J. Bourgain, “Global wellposedness of defocusing critical nonlinear Schrödinger equation in the radial case”, J. Amer. Math. Soc. 12:1 (1999), 145–171.
  • W. O. Bray, “Aspects of harmonic analysis on real hyperbolic space”, pp. 77–102 in Fourier analysis (Orono, ME, 1992), edited by W. O. Bray et al., Lecture Notes in Pure and Appl. Math. 157, Dekker, New York, 1994.
  • N. Burq and F. Planchon, “Global existence for energy critical waves in 3-D domains: Neumann boundary conditions”, Amer. J. Math. 131:6 (2009), 1715–1742.
  • N. Burq, P. Gérard, and N. Tzvetkov, “Strichartz inequalities and the nonlinear Schrödinger equation on compact manifolds”, Amer. J. Math. 126:3 (2004), 569–605.
  • N. Burq, P. Gérard, and N. Tzvetkov, “Bilinear eigenfunction estimates and the nonlinear Schrödinger equation on surfaces”, Invent. Math. 159:1 (2005), 187–223.
  • N. Burq, G. Lebeau, and F. Planchon, “Global existence for energy critical waves in 3-D domains”, J. Amer. Math. Soc. 21:3 (2008), 831–845.
  • T. Cazenave, Semilinear Schrödinger equations, Courant Lecture Notes in Mathematics 10, American Mathematical Society, Providence, RI, 2003.
  • H. Christianson and J. L. Marzuola, “Existence and stability of solitons for the nonlinear Schrödinger equation on hyperbolic space”, Nonlinearity 23:1 (2010), 89–106.
  • J. L. Clerc and E. M. Stein, “$L\sp{p}$-multipliers for noncompact symmetric spaces”, Proc. Nat. Acad. Sci. U.S.A. 71 (1974), 3911–3912.
  • J. Colliander, M. Keel, G. Staffilani, H. Takaoka, and T. Tao, “Global well-posedness and scattering for the energy-critical nonlinear Schrödinger equation in $\mathbb R\sp 3$”, Ann. of Math. $(2)$ 167:3 (2008), 767–865.
  • J. Colliander, M. Keel, G. Staffilani, H. Takaoka, and T. Tao, “Transfer of energy to high frequencies in the cubic defocusing nonlinear Schrödinger equation”, Invent. Math. 181:1 (2010), 39–113.
  • S.-i. Doi, “Smoothing effects of Schrödinger evolution groups on Riemannian manifolds”, Duke Math. J. 82:3 (1996), 679–706.
  • O. Druet, E. Hebey, and F. Robert, Blow-up theory for elliptic PDEs in Riemannian geometry, Mathematical Notes 45, Princeton University Press, 2004.
  • P. Gérard and V. Pierfelice, “Nonlinear Schrödinger equation on four-dimensional compact manifolds”, Bull. Soc. Math. France 138:1 (2010), 119–151.
  • B. Gidas and J. Spruck, “A priori bounds for positive solutions of nonlinear elliptic equations”, Comm. Partial Differential Equations 6:8 (1981), 883–901.
  • M. G. Grillakis, “Regularity and asymptotic behaviour of the wave equation with a critical nonlinearity”, Ann. of Math. $(2)$ 132:3 (1990), 485–509.
  • M. G. Grillakis, “Regularity for the wave equation with a critical nonlinearity”, Comm. Pure Appl. Math. 45:6 (1992), 749–774.
  • M. G. Grillakis, “On nonlinear Schrödinger equations”, Comm. Partial Differential Equations 25:9-10 (2000), 1827–1844.
  • E. Hebey and M. Vaugon, “The best constant problem in the Sobolev embedding theorem for complete Riemannian manifolds”, Duke Math. J. 79:1 (1995), 235–279.
  • S. Helgason, “Radon–Fourier transforms on symmetric spaces and related group representations”, Bull. Amer. Math. Soc. 71 (1965), 757–763.
  • S. Helgason, Geometric analysis on symmetric spaces, Mathematical Surveys and Monographs 39, American Mathematical Society, Providence, RI, 1994.
  • S. Herr, D. Tataru, and N. Tzvetkov, “Global well-posedness of the energy-critical nonlinear Schrödinger equation with small initial data in $H\sp 1(\mathbb T\sp 3)$”, Duke Math. J. 159:2 (2011), 329–349.
  • S. Ibrahim and M. Majdoub, “Solutions globales de l'équation des ondes semi-linéaire critique à coefficients variables”, Bull. Soc. Math. France 131:1 (2003), 1–22.
  • S. Ibrahim, M. Majdoub, N. Masmoudi, and K. Nakanishi, “Scattering for the two-dimensional energy-critical wave equation”, Duke Math. J. 150:2 (2009), 287–329.
  • S. Ibrahim, N. Masmoudi, and K. Nakanishi, “Scattering threshold for the focusing nonlinear Klein-Gordon equation”, Anal. PDE 4:3 (2011), 405–460.
  • A. D. Ionescu and B. Pausader, “The energy-critical defocusing NLS on $\mathbb{T}^3$”, Duke Math. J. 161:8 (2012), 1581–1612.
  • A. D. Ionescu and B. Pausader, “Global well-posedness of the energy-critical defocusing NLS on $\mathbb{R}\times\mathbb{T}^3$”, Commun. Math. Phys. 312:3 (2012), 781–831.
  • A. D. Ionescu and G. Staffilani, “Semilinear Schrödinger flows on hyperbolic spaces: scattering $H\sp 1$”, Math. Ann. 345:1 (2009), 133–158.
  • L. Kapitanski, “Global and unique weak solutions of nonlinear wave equations”, Math. Res. Lett. 1:2 (1994), 211–223.
  • M. Keel and T. Tao, “Endpoint Strichartz estimates”, Amer. J. Math. 120:5 (1998), 955–980. http:www.ams.org/mathscinet-getitem?mr=2000d:35018MR 2000d:35018
  • C. E. Kenig and F. Merle, “Global well-posedness, scattering and blow-up for the energy-critical, focusing, non-linear Schrödinger equation in the radial case”, Invent. Math. 166:3 (2006), 645–675.
  • C. E. Kenig and F. Merle, “Global well-posedness, scattering and blow-up for the energy-critical focusing non-linear wave equation”, Acta Math. 201:2 (2008), 147–212.
  • S. Keraani, “On the defect of compactness for the Strichartz estimates of the Schrödinger equations”, J. Differential Equations 175:2 (2001), 353–392.
  • R. Killip, B. Stovall, and M. Visan, “Scattering for the cubic Klein–Gordon equation in two space dimensions”, Trans. Amer. Math. Soc. 364:3 (2012), 1571–1631.
  • C. Laurent, “On stabilization and control for the critical Klein–Gordon equation on a 3-D compact manifold”, J. Funct. Anal. 260:5 (2011), 1304–1368.
  • V. Pierfelice, “Weighted Strichartz estimates for the Schrödinger and wave equations on Damek–Ricci spaces”, Math. Z. 260:2 (2008), 377–392.
  • E. Ryckman and M. Visan, “Global well-posedness and scattering for the defocusing energy-critical nonlinear Schrödinger equation in $\mathbb R\sp {1+4}$”, Amer. J. Math. 129:1 (2007), 1–60.
  • R. M. Schoen, “Variational theory for the total scalar curvature functional for Riemannian metrics and related topics”, pp. 120–154 in Topics in calculus of variations (Montecatini Terme, 1987), edited by M. Giaquinta, Lecture Notes in Math. 1365, Springer, Berlin, 1989.
  • J. Shatah and M. Struwe, “Regularity results for nonlinear wave equations”, Ann. of Math. $(2)$ 138:3 (1993), 503–518.
  • J. Shatah and M. Struwe, “Well-posedness in the energy space for semilinear wave equations with critical growth”, Internat. Math. Res. Notices 1994:7 (1994), 303ff., approx. 7 pp.
  • R. J. Stanton and P. A. Tomas, “Expansions for spherical functions on noncompact symmetric spaces”, Acta Math. 140:3-4 (1978), 251–276.
  • M. Struwe, “Globally regular solutions to the $u\sp 5$ Klein–Gordon equation”, Ann. Scuola Norm. Sup. Pisa Cl. Sci. $(4)$ 15:3 (1988), 495–513.
  • T. Tao, Nonlinear dispersive equations: Local and global analysis, CBMS Regional Conference Series in Mathematics 106, American Mathematical Society, Providence, RI, 2006.
  • M. Visan, “The defocusing energy-critical nonlinear Schrödinger equation in higher dimensions”, Duke Math. J. 138:2 (2007), 281–374.