Analysis & PDE

  • Anal. PDE
  • Volume 3, Number 3 (2010), 227-260.

Local WKB construction for Witten Laplacians on manifolds with boundary

Dorian Le Peutrec

Full-text: Open access

Abstract

WKB p-forms are constructed as approximate solutions to boundary value problems associated with semiclassical Witten Laplacians. Naturally distorted Neumann or Dirichlet boundary conditions are considered.

Article information

Source
Anal. PDE, Volume 3, Number 3 (2010), 227-260.

Dates
Received: 3 November 2008
Revised: 19 November 2009
Accepted: 20 December 2009
First available in Project Euclid: 20 December 2017

Permanent link to this document
https://projecteuclid.org/euclid.apde/1513731077

Digital Object Identifier
doi:10.2140/apde.2010.3.227

Mathematical Reviews number (MathSciNet)
MR2672794

Zentralblatt MATH identifier
1225.58012

Subjects
Primary: 58J10: Differential complexes [See also 35Nxx]; elliptic complexes 58J32: Boundary value problems on manifolds 58J37: Perturbations; asymptotics 81Q20: Semiclassical techniques, including WKB and Maslov methods

Keywords
WKB expansion boundary value problem Witten Laplacian

Citation

Le Peutrec, Dorian. Local WKB construction for Witten Laplacians on manifolds with boundary. Anal. PDE 3 (2010), no. 3, 227--260. doi:10.2140/apde.2010.3.227. https://projecteuclid.org/euclid.apde/1513731077


Export citation

References

  • A. Bovier, M. Eckhoff, V. Gayrard, and M. Klein, “Metastability in reversible diffusion processes, I: Sharp asymptotics for capacities and exit times”, J. Eur. Math. Soc. $($JEMS$)$ 6:4 (2004), 399–424.
  • A. Bovier, V. Gayrard, and M. Klein, “Metastability in reversible diffusion processes, II: Precise asymptotics for small eigenvalues”, J. Eur. Math. Soc. $($JEMS$)$ 7:1 (2005), 69–99.
  • K. C. Chang and J. Liu, “A cohomology complex for manifolds with boundary”, Topol. Methods Nonlinear Anal. 5:2 (1995), 325–340.
  • H. L. Cycon, R. G. Froese, W. Kirsch, and B. Simon, Schrödinger operators with application to quantum mechanics and global geometry, Springer, Berlin, 1987.
  • M. Dimassi and J. Sj östrand, Spectral asymptotics in the semi-classical limit, London Mathematical Society Lecture Note Series 268, Cambridge University Press, Cambridge, 1999.
  • G. F. D. Duff, “Differential forms in manifolds with boundary”, Ann. of Math. $(2)$ 56 (1952), 115–127.
  • G. F. D. Duff and D. C. Spencer, “Harmonic tensors on Riemannian manifolds with boundary”, Ann. of Math. $(2)$ 56 (1952), 128–156.
  • B. Helffer, Semi-classical analysis for the Schrödinger operator and applications, Lecture Notes in Mathematics 1336, Springer, Berlin, 1988.
  • B. Helffer and F. Nier, Quantitative analysis of metastability in reversible diffusion processes via a Witten complex approach: the case with boundary, Mém. Soc. Math. Fr. $($N.S.$)$ 105, 2006.
  • B. Helffer and J. Sj östrand, “Multiple wells in the semiclassical limit, I”, Comm. Partial Differential Equations 9:4 (1984), 337–408.
  • B. Helffer and J. Sj östrand, “Puits multiples en mécanique semi-classique, IV: Étude du complexe de Witten”, Comm. Partial Differential Equations 10:3 (1985), 245–340.
  • B. Helffer, M. Klein, and F. Nier, “Quantitative analysis of metastability in reversible diffusion processes via a Witten complex approach”, Mat. Contemp. 26 (2004), 41–85.
  • N. Koldan, I. Prokhorenkov, and M. Shubin, “Semiclassical asymptotics on manifolds with boundary”, pp. 239–266 in Spectral analysis in geometry and number theory, edited by M. Kotani et al., Contemp. Math. 484, Amer. Math. Soc., Providence, RI, 2009.
  • D. Le Peutrec, “Small eigenvalues of the Neumann realization of the semiclassical Witten Laplacian”, preprint, IRMAR, 2008, http://hal.archives-ouvertes.fr/hal-00297207/fr/.
  • P. Petersen, Riemannian geometry, Graduate Texts in Math. 171, Springer, New York, 1998.
  • G. Schwarz, Hodge decomposition–-a method for solving boundary value problems, Lecture Notes in Mathematics 1607, Springer, Berlin, 1995. \def
  • E. Witten, “Supersymmetry and Morse theory”, J. Differential Geom. 17:4 (1982), 661–692 (1983).