Analysis & PDE

  • Anal. PDE
  • Volume 3, Number 2 (2010), 197-205.

Estimées des noyaux de Green et de la chaleur sur les espaces symétriques

Gilles Carron

Full-text: Open access

Abstract

On majore les noyaux de Green et de la chaleur au dehors de la diagonale pour des opérateurs de type laplacien sur les espaces symétriques.

We provide an upper bound for the off-diagonal entries of the Green and heat kernel for Laplace-type operators on symmetric spaces.

Article information

Source
Anal. PDE, Volume 3, Number 2 (2010), 197-205.

Dates
Received: 15 September 2009
Revised: 25 January 2010
Accepted: 22 February 2010
First available in Project Euclid: 20 December 2017

Permanent link to this document
https://projecteuclid.org/euclid.apde/1513731056

Digital Object Identifier
doi:10.2140/apde.2010.3.197

Mathematical Reviews number (MathSciNet)
MR2657454

Zentralblatt MATH identifier
1226.53050

Subjects
Primary: 53C35: Symmetric spaces [See also 32M15, 57T15] 58J50: Spectral problems; spectral geometry; scattering theory [See also 35Pxx]
Secondary: 22E40: Discrete subgroups of Lie groups [See also 20Hxx, 32Nxx]

Keywords
espace symétrique noyau de Green noyau de la chaleur laplacien propagation à vitesse finie symmetric space Green kernel heat kernel laplacian finite-speed propagation

Citation

Carron, Gilles. Estimées des noyaux de Green et de la chaleur sur les espaces symétriques. Anal. PDE 3 (2010), no. 2, 197--205. doi:10.2140/apde.2010.3.197. https://projecteuclid.org/euclid.apde/1513731056


Export citation

References

  • J.-P. Anker, “La forme exacte de l'estimation fondamentale de Harish-Chandra”, C. R. Acad. Sci. Paris Sér. I Math. 305:9 (1987), 371–374.
  • J.-P. Anker and L. Ji, “Heat kernel and Green function estimates on noncompact symmetric spaces”, Geom. Funct. Anal. 9:6 (1999), 1035–1091.
  • G. Carron and E. Pedon, “On the differential form spectrum of hyperbolic manifolds”, Ann. Sc. Norm. Super. Pisa Cl. Sci. $(5)$ 3:4 (2004), 705–747.
  • J. Cheeger, M. Gromov, and M. Taylor, “Finite propagation speed, kernel estimates for functions of the Laplace operator, and the geometry of complete Riemannian manifolds”, J. Differential Geom. 17:1 (1982), 15–53.
  • E. B. Davies and N. Mandouvalos, “Heat kernel bounds on hyperbolic space and Kleinian groups”, Proc. London Math. Soc. $(3)$ 57:1 (1988), 182–208.
  • P. Delorme, “Sur le théorème de Paley–Wiener d'Arthur”, Ann. of Math. $(2)$ 162:2 (2005), 987–1029. \let =
  • H. Donnelly, “The differential form spectrum of hyperbolic space”, Manuscripta Math. 33:3-4 (1981), 365–385.
  • A. Grigor'yan, “Heat kernel upper bounds on a complete non-compact manifold”, Rev. Mat. Iberoamericana 10:2 (1994), 395–452.
  • N. Lohoué and S. Mehdi, “Estimées du noyau de la chaleur pour les formes différentielles sur les espaces symétriques et $L\sp 2$-cohomologie des espaces localement symétriques”, C. R. Math. Acad. Sci. Paris 345:3 (2007), 119–122.
  • X. Ma and G. Marinescu, Holomorphic Morse inequalities and Bergman kernels, Progress in Mathematics 254, Birkhäuser, Basel, 2007.
  • R. Mazzeo and A. Vasy, “Scattering theory on ${\rm SL}(3)/{\rm SO}(3)$: connections with quantum 3-body scattering”, Proc. Lond. Math. Soc. $(3)$ 94:3 (2007), 545–593.
  • J. Moser, “A Harnack inequality for parabolic differential equations”, Comm. Pure Appl. Math. 17 (1964), 101–134.
  • E. Pedon, “Harmonic analysis for differential forms on complex hyperbolic spaces”, J. Geom. Phys. 32:2 (1999), 102–130.
  • E. Pedon, “The differential form spectrum of quaternionic hyperbolic spaces”, Bull. Sci. Math. 129:3 (2005), 227–265.
  • L. Saloff-Coste, “Uniformly elliptic operators on Riemannian manifolds”, J. Differential Geom. 36:2 (1992), 417–450.
  • M. E. Taylor, “$L\sp p$-estimates on functions of the Laplace operator”, Duke Math. J. 58:3 (1989), 773–793.