Analysis & PDE

  • Anal. PDE
  • Volume 3, Number 2 (2010), 175-195.

Regularity of almost periodic modulo scaling solutions for mass-critical NLS and applications

Dong Li and Xiaoyi Zhang

Full-text: Open access

Abstract

We consider the Lx2 solution u to mass-critical NLS iut+Δu=±|u|4du. We prove that in dimensions d4, if the solution is spherically symmetric and is almost periodic modulo scaling, then it must lie in Hx1+ε for some ε>0. Moreover, the kinetic energy of the solution is localized uniformly in time. One important application of the theorem is a simplified proof of the scattering conjecture for mass-critical NLS without reducing to three enemies. As another important application, we establish a Liouville type result for Lx2 initial data with ground state mass. We prove that if a radial Lx2 solution to focusing mass-critical problem has the ground state mass and does not scatter in both time directions, then it must be global and coincide with the solitary wave up to symmetries. Here the ground state is the unique, positive, radial solution to elliptic equation ΔQQ+Q1+4d=0. This is the first rigidity type result in scale invariant space Lx2.

Article information

Source
Anal. PDE, Volume 3, Number 2 (2010), 175-195.

Dates
Received: 10 August 2009
Revised: 18 November 2009
Accepted: 17 December 2009
First available in Project Euclid: 20 December 2017

Permanent link to this document
https://projecteuclid.org/euclid.apde/1513731055

Digital Object Identifier
doi:10.2140/apde.2010.3.175

Mathematical Reviews number (MathSciNet)
MR2657453

Zentralblatt MATH identifier
1225.35220

Subjects
Primary: 35Q55: NLS-like equations (nonlinear Schrödinger) [See also 37K10]

Keywords
Schrödinger equation mass-critical

Citation

Li, Dong; Zhang, Xiaoyi. Regularity of almost periodic modulo scaling solutions for mass-critical NLS and applications. Anal. PDE 3 (2010), no. 2, 175--195. doi:10.2140/apde.2010.3.175. https://projecteuclid.org/euclid.apde/1513731055


Export citation

References

  • P. Bégout and A. Vargas, “Mass concentration phenomena for the $L\sp 2$-critical nonlinear Schrödinger equation”, Trans. Amer. Math. Soc. 359:11 (2007), 5257–5282.
  • H. Berestycki and P.-L. Lions, “Existence d'ondes solitaires dans des problèmes nonlinéaires du type Klein–Gordon”, C. R. Acad. Sci. Paris Sér. A-B 288:7 (1979), A395–A398.
  • T. Cazenave, Semilinear Schrödinger equations, Courant Lecture Notes in Math. 10, NYU Courant Inst. of Math. Sciences, New York, 2003.
  • F. M. Christ and M. I. Weinstein, “Dispersion of small amplitude solutions of the generalized Korteweg–de Vries equation”, J. Funct. Anal. 100:1 (1991), 87–109.
  • J. Ginibre and G. Velo, “Smoothing properties and retarded estimates for some dispersive evolution equations”, Comm. Math. Phys. 144:1 (1992), 163–188.
  • R. T. Glassey, “On the blowing up of solutions to the Cauchy problem for nonlinear Schrödinger equations”, J. Math. Phys. 18:9 (1977), 1794–1797.
  • T. Hmidi and S. Keraani, “Blowup theory for the critical nonlinear Schrödinger equations revisited”, Int. Math. Res. Not. 46 (2005), 2815–2828.
  • M. Keel and T. Tao, “Endpoint Strichartz estimates”, Amer. J. Math. 120:5 (1998), 955–980. http://www.ams.org/mathscinet- getitem?mr=2000d:35018MR 2000d:35018
  • C. E. Kenig and F. Merle, “Global well-posedness, scattering and blow-up for the energy-critical, focusing, non-linear Schrödinger equation in the radial case”, Invent. Math. 166:3 (2006), 645–675.
  • S. Keraani, “On the defect of compactness for the Strichartz estimates of the Schrödinger equations”, J. Differential Equations 175:2 (2001), 353–392.
  • S. Keraani, “On the blow up phenomenon of the critical nonlinear Schrödinger equation”, J. Funct. Anal. 235:1 (2006), 171–192.
  • R. Killip, M. Visan, and X. Zhang, “The mass-critical nonlinear Schrödinger equation with radial data in dimensions three and higher”, Anal. PDE 1:2 (2008), 229–266.
  • R. Killip, D. Li, M. Visan, and X. Zhang, “Characterization of minimal-mass blowup solutions to the focusing mass-critical NLS”, SIAM J. Math. Anal. 41:1 (2009), 219–236.
  • R. Killip, T. Tao, and M. Visan, “The cubic nonlinear Schrödinger equation in two dimensions with radial data”, J. Eur. Math. Soc. 11:6 (2009), 1203–1258.
  • M. K. Kwong, “Uniqueness of positive solutions of $\Delta u-u+u\sp p=0$ in ${\bf R}\sp n$”, Arch. Rational Mech. Anal. 105:3 (1989), 243–266.
  • D. Li and X. Zhang, “On the focusing mass critical problem in six dimensions with splitting spherically symmetric initial data”, preprint, 2009. Submitted to Discrete Contin. Dynam. Systems.
  • D. Li and X. Zhang, “On the rigidity of solitary waves for the focusing mass-critical NLS in dimensions $d\ge 2$”, preprint, 2009.
  • F. Merle, “Determination of blow-up solutions with minimal mass for nonlinear Schrödinger equations with critical power”, Duke Math. J. 69:2 (1993), 427–454.
  • F. Merle and P. Raphael, “The blow-up dynamic and upper bound on the blow-up rate for critical nonlinear Schrödinger equation”, Ann. of Math. $(2)$ 161:1 (2005), 157–222.
  • G. Staffilani, “On the generalized Korteweg–de Vries-type equations”, Differential Integral Equations 10:4 (1997), 777–796.
  • R. S. Strichartz, “Restrictions of Fourier transforms to quadratic surfaces and decay of solutions of wave equations”, Duke Math. J. 44:3 (1977), 705–714.
  • T. Tao, M. Visan, and X. Zhang, “Global well-posedness and scattering for the defocusing mass-critical nonlinear Schrödinger equation for radial data in high dimensions”, Duke Math. J. 140:1 (2007), 165–202.
  • T. Tao, M. Visan, and X. Zhang, “Minimal-mass blowup solutions of the mass-critical NLS”, Forum Math. 20:5 (2008), 881–919.
  • M. E. Taylor, Tools for PDE. Pseudodifferential operators, paradifferential operators, and layer potentials, Math. Surveys and Monogr. 81, Amer. Math. Soc., Providence, RI, 2000.
  • M. I. Weinstein, “Nonlinear Schrödinger equations and sharp interpolation estimates”, Comm. Math. Phys. 87:4 (1983), 567–576.
  • M. I. Weinstein, “On the structure and formation of singularities in solutions to nonlinear dispersive evolution equations”, Comm. Partial Differential Equations 11:5 (1986), 545–565.