Analysis & PDE

  • Anal. PDE
  • Volume 9, Number 6 (2016), 1285-1315.

A complete study of the lack of compactness and existence results of a fractional Nirenberg equation via a flatness hypothesis, I

Wael Abdelhedi, Hichem Chtioui, and Hichem Hajaiej

Full-text: Access denied (no subscription detected)

However, an active subscription may be available with MSP at msp.org/apde.

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Abstract

We consider a nonlinear critical problem involving the fractional Laplacian operator arising in conformal geometry, namely the prescribed σ-curvature problem on the standard n-sphere, n 2. Under the assumption that the prescribed function is flat near its critical points, we give precise estimates on the losses of the compactness and we provide existence results. In this first part, we will focus on the case 1 < β n 2σ, which is not covered by the method of Jin, Li, and Xiong (2014, 2015).

Article information

Source
Anal. PDE, Volume 9, Number 6 (2016), 1285-1315.

Dates
Received: 17 March 2015
Revised: 26 November 2015
Accepted: 12 April 2016
First available in Project Euclid: 16 November 2017

Permanent link to this document
https://projecteuclid.org/euclid.apde/1510843323

Digital Object Identifier
doi:10.2140/apde.2016.9.1285

Mathematical Reviews number (MathSciNet)
MR3555312

Zentralblatt MATH identifier
1366.35211

Subjects
Primary: 35J60: Nonlinear elliptic equations 35B33: Critical exponents 35B99: None of the above, but in this section 35R11: Fractional partial differential equations 58E30: Variational principles

Keywords
fractional Laplacian critical exponent $\sigma$-curvature critical points at infinity

Citation

Abdelhedi, Wael; Chtioui, Hichem; Hajaiej, Hichem. A complete study of the lack of compactness and existence results of a fractional Nirenberg equation via a flatness hypothesis, I. Anal. PDE 9 (2016), no. 6, 1285--1315. doi:10.2140/apde.2016.9.1285. https://projecteuclid.org/euclid.apde/1510843323


Export citation

References

  • W. Abdelhedi and H. Chtioui, “On the prescribed Paneitz curvature problem on the standard spheres”, Adv. Nonlinear Stud. 6:4 (2006), 511–528.
  • W. Abdelhedi and H. Chtioui, “On a Nirenberg-type problem involving the square root of the Laplacian”, J. Funct. Anal. 265:11 (2013), 2937–2955.
  • W. Abdelhedi and H. Chtioui, “On a fractional Nirenberg type problem on the $n$-dimensional sphere”, preprint.
  • A. Ambrosetti, J. Garcia Azorero, and I. Peral Alonso, “Perturbation of $\Delta u+u\sp {(N+2)/(N-2)}=0$, the scalar curvature problem in ${\R}^N$, and related topics”, J. Funct. Anal. 165:1 (1999), 117–149.
  • A. Bahri, Critical points at infinity in some variational problems, Pitman Research Notes in Mathematics Series 182, Longman, Harlow, 1989.
  • A. Bahri, “An invariant for Yamabe-type flows with applications to scalar-curvature problems in high dimension”, Duke Math. J. 81:2 (1996), 323–466.
  • A. Bahri and J.-M. Coron, “The scalar-curvature problem on the standard three-dimensional sphere”, J. Funct. Anal. 95:1 (1991), 106–172.
  • A. Bahri and P. H. Rabinowitz, “Periodic solutions of Hamiltonian systems of $3$-body type”, Ann. Inst. H. Poincaré Anal. Non Linéaire 8:6 (1991), 561–649.
  • M. Ben Ayed, Y. Chen, H. Chtioui, and M. Hammami, “On the prescribed scalar curvature problem on $4$-manifolds”, Duke Math. J. 84:3 (1996), 633–677.
  • R. Ben Mahmoud and H. Chtioui, “Prescribing the scalar curvature problem on higher-dimensional manifolds”, Discrete Contin. Dyn. Syst. 32:5 (2012), 1857–1879.
  • H. Brezis and J.-M. Coron, “Convergence of solutions of $H$-systems or how to blow bubbles”, Arch. Rational Mech. Anal. 89:1 (1985), 21–56.
  • L. Caffarelli and L. Silvestre, “An extension problem related to the fractional Laplacian”, Comm. Partial Differential Equations 32:7-9 (2007), 1245–1260.
  • S.-Y. A. Chang and M. d. M. González, “Fractional Laplacian in conformal geometry”, Adv. Math. 226:2 (2011), 1410–1432.
  • S.-Y. A. Chang and P. C. Yang, “Conformal deformation of metrics on $S^2$”, J. Differential Geom. 27:2 (1988), 259–296.
  • S.-Y. A. Chang, M. J. Gursky, and P. C. Yang, “The scalar curvature equation on $2$- and $3$-spheres”, Calc. Var. Partial Differential Equations 1:2 (1993), 205–229.
  • C.-C. Chen and C.-S. Lin, “Prescribing scalar curvature on $S^n$, I: Apriori estimates”, J. Differential Geom. 57:1 (2001), 67–171.
  • G. Chen and Y. Zheng, “A perturbation result for the $Q\sb \gamma$ curvature problem on $S^n$”, Nonlinear Anal. 97 (2014), 4–14.
  • Y.-H. Chen and Y. Zheng, “Peak solutions for the fractional Nirenberg problem”, Nonlinear Anal. 122 (2015), 100–124.
  • Y.-H. Chen, C. Liu, and Y. Zheng, “Existence results for the fractional Nirenberg problem”, J. Funct. Anal. 270:11 (2016), 4043–4086.
  • Z. Djadli, E. Hebey, and M. Ledoux, “Paneitz-type operators and applications”, Duke Math. J. 104:1 (2000), 129–169.
  • C. Fefferman and C. R. Graham, “Juhl's formulae for GJMS operators and $Q$-curvatures”, J. Amer. Math. Soc. 26:4 (2013), 1191–1207.
  • M. d. M. González and J. Qing, “Fractional conformal Laplacians and fractional Yamabe problems”, Anal. PDE 6:7 (2013), 1535–1576.
  • M. d. M. González, R. Mazzeo, and Y. Sire, “Singular solutions of fractional order conformal Laplacians”, J. Geom. Anal. 22:3 (2012), 845–863.
  • C. R. Graham and M. Zworski, “Scattering matrix in conformal geometry”, Invent. Math. 152:1 (2003), 89–118.
  • C. R. Graham, R. Jenne, L. J. Mason, and G. A. J. Sparling, “Conformally invariant powers of the Laplacian, I: Existence”, J. London Math. Soc. $(2)$ 46:3 (1992), 557–565.
  • H. Hajaiej, L. Molinet, T. Ozawa, and B. Wang, “Necessary and sufficient conditions for the fractional Gagliardo–Nirenberg inequalities and applications to Navier–Stokes and generalized boson equations”, pp. 159–175 in Harmonic analysis and nonlinear partial differential equations, edited by T. Ozawa and M. Sugimoto, RIMS Kôkyûroku Bessatsu $($B$)$ 26, Research Institute for Mathematical Sciences, Kyoto, 2011.
  • Z.-C. Han, “Prescribing Gaussian curvature on $S^2$”, Duke Math. J. 61:3 (1990), 679–703.
  • T. Jin, Y. Y. Li, and J. Xiong, “On a fractional Nirenberg problem, part I: Blow up analysis and compactness of solutions”, J. Eur. Math. Soc. 16:6 (2014), 1111–1171.
  • T. Jin, Y. Y. Li, and J. Xiong, “On a fractional Nirenberg problem, part II: Existence of solutions”, Int. Math. Res. Not. 2015:6 (2015), 1555–1589.
  • A. Juhl, “Explicit formulas for GJMS-operators and $Q$-curvatures”, Geom. Funct. Anal. 23:4 (2013), 1278–1370.
  • A. Juhl, “On the recursive structure of Branson's $Q$-curvatures”, Math. Res. Lett. 21:3 (2014), 495–507.
  • D. Koutroufiotis, “Gaussian curvature and conformal mapping”, J. Differential Geom. 7:3–4 (1972), 479–488.
  • Y. Y. Li, “Prescribing scalar curvature on $S^n$ and related problems, I”, J. Differential Equations 120:2 (1995), 319–410.
  • Y. Y. Li, “Prescribing scalar curvature on $S^n$ and related problems, II: Existence and compactness”, Comm. Pure Appl. Math. 49:6 (1996), 541–597.
  • Y. Y. Li and M. Zhu, “Uniqueness theorems through the method of moving spheres”, Duke Math. J. 80:2 (1995), 383–417.
  • J. Moser, “On a nonlinear problem in differential geometry”, pp. 273–280 in Dynamical systems (Salvador, 1971), edited by M. M. Peixoto, Academic Press, New York, 1973.
  • S. M. Paneitz, “A quartic conformally covariant differential operator for arbitrary pseudo-Riemannian manifolds (summary)”, Symmetry Integrability Geom. Methods Appl. 4 (2008), art. ID #036.
  • J. Qing and D. Raske, “On positive solutions to semilinear conformally invariant equations on locally conformally flat manifolds”, Int. Math. Res. Not. 2006 (2006), art. ID #94172.
  • R. Schoen and D. Zhang, “Prescribed scalar curvature on the $n$-sphere”, Calc. Var. Partial Differential Equations 4:1 (1996), 1–25.
  • E. M. Stein, Singular integrals and differentiability properties of functions, Princeton Mathematical Series 30, Princeton University Press, 1970.
  • J. Wei and X. Xu, “Prescribing $Q$-curvature problem on $S^n$”, J. Funct. Anal. 257:7 (2009), 1995–2023.