Analysis & PDE

  • Anal. PDE
  • Volume 8, Number 4 (2015), 883-922.

Growth of Sobolev norms for the quintic NLS on $T^2$

Emanuele Haus and Michela Procesi

Full-text: Access denied (no subscription detected)

However, an active subscription may be available with MSP at

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text


We study the quintic nonlinear Schrödinger equation on a two-dimensional torus and exhibit orbits whose Sobolev norms grow with time. The main point is to reduce to a sufficiently simple toy model, similar in many ways to the one discussed by Colliander et al. for the case of the cubic NLS. This requires an accurate combinatorial analysis.

Article information

Anal. PDE, Volume 8, Number 4 (2015), 883-922.

Received: 9 June 2014
Revised: 19 January 2015
Accepted: 6 March 2015
First available in Project Euclid: 16 November 2017

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 35B34: Resonances 35Q55: NLS-like equations (nonlinear Schrödinger) [See also 37K10] 37K45: Stability problems

nonlinear Schrödinger equation growth of Sobolev norms Hamiltonian PDEs weak turbulence


Haus, Emanuele; Procesi, Michela. Growth of Sobolev norms for the quintic NLS on $T^2$. Anal. PDE 8 (2015), no. 4, 883--922. doi:10.2140/apde.2015.8.883.

Export citation


  • D. Bambusi, “Long time stability of some small amplitude solutions in nonlinear Schrödinger equations”, Comm. Math. Phys. 189:1 (1997), 205–226.
  • D. Bambusi, “Nekhoroshev theorem for small amplitude solutions in nonlinear Schrödinger equations”, Math. Z. 230:2 (1999), 345–387.
  • D. Bambusi, “Birkhoff normal form for some nonlinear PDEs”, Comm. Math. Phys. 234:2 (2003), 253–285.
  • D. Bambusi and B. Grébert, “Birkhoff normal form for partial differential equations with tame modulus”, Duke Math. J. 135:3 (2006), 507–567.
  • M. Berti and L. Biasco, “Branching of Cantor manifolds of elliptic tori and applications to PDEs”, Comm. Math. Phys. 305:3 (2011), 741–796.
  • M. Berti and P. Bolle, “Quasi-periodic solutions with Sobolev regularity of NLS on $\mathbb{T}\sp d$ with a multiplicative potential”, J. Eur. Math. Soc. $($JEMS$)$ 15:1 (2013), 229–286.
  • M. Berti, L. Corsi, and M. Procesi, “An abstract Nash–Moser theorem and quasi-periodic solutions for NLW and NLS on compact Lie groups and homogeneous manifolds”, Comm. Math. Phys. 334:3 (2015), 1413–1454.
  • J. Bourgain, “Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations, I: Schrödinger equations”, Geom. Funct. Anal. 3:2 (1993), 107–156.
  • J. Bourgain, “Construction of approximative and almost periodic solutions of perturbed linear Schrödinger and wave equations”, Geom. Funct. Anal. 6:2 (1996), 201–230.
  • J. Bourgain, “On the growth in time of higher Sobolev norms of smooth solutions of Hamiltonian PDE”, Internat. Math. Res. Notices 6 (1996), 277–304.
  • J. Bourgain, “Quasi-periodic solutions of Hamiltonian perturbations of 2D linear Schrödinger equations”, Ann. of Math. $(2)$ 148:2 (1998), 363–439.
  • J. Bourgain, “On diffusion in high-dimensional Hamiltonian systems and PDE”, J. Anal. Math. 80 (2000), 1–35.
  • N. Burq, P. Gérard, and N. Tzvetkov, “Strichartz inequalities and the nonlinear Schrödinger equation on compact manifolds”, Amer. J. Math. 126:3 (2004), 569–605.
  • L. Chierchia and P. Perfetti, “Second order Hamiltonian equations on ${\bf T}\sp \infty$ and almost-periodic solutions”, J. Differential Equations 116:1 (1995), 172–201.
  • J. Colliander, M. Keel, G. Staffilani, H. Takaoka, and T. Tao, “Transfer of energy to high frequencies in the cubic defocusing nonlinear Schrödinger equation”, Invent. Math. 181:1 (2010), 39–113.
  • L. H. Eliasson and S. B. Kuksin, “KAM for the nonlinear Schrödinger equation”, Ann. of Math. $(2)$ 172:1 (2010), 371–435.
  • E. Faou, L. Gauckler, and C. Lubich, “Sobolev stability of plane wave solutions to the cubic nonlinear Schrödinger equation on a torus”, Comm. Partial Differential Equations 38:7 (2013), 1123–1140.
  • J. Geng, X. Xu, and J. You, “An infinite dimensional KAM theorem and its application to the two dimensional cubic Schrödinger equation”, Adv. Math. 226:6 (2011), 5361–5402.
  • P. Gérard and S. Grellier, “The cubic Szegő equation”, Ann. Sci. Éc. Norm. Supér. $(4)$ 43:5 (2010), 761–810.
  • B. Grébert and L. Thomann, “Resonant dynamics for the quintic nonlinear Schrödinger equation”, Ann. Inst. H. Poincaré Anal. Non Linéaire 29:3 (2012), 455–477.
  • B. Grébert, R. Imekraz, and É. Paturel, “Normal forms for semilinear quantum harmonic oscillators”, Comm. Math. Phys. 291:3 (2009), 763–798.
  • B. Grébert, T. Kappeler, and J. Pöschel, “Normal form theory for the NLS equation”, preprint, 2009.
  • M. Guardia and V. Kaloshin, “Growth of Sobolev norms in the cubic defocusing nonlinear Schrödinger equation”, J. Eur. Math. Soc. $($JEMS$)$ 17:1 (2015), 71–149.
  • Z. Hani, “Long-time instability and unbounded Sobolev orbits for some periodic nonlinear Schrödinger equations”, Arch. Ration. Mech. Anal. 211:3 (2014), 929–964.
  • Z. Hani, B. Pausader, N. Tzvetkov, and N. Visciglia, “Modified scattering for the cubic Schrödinger equation on product spaces and applications”, preprint, 2013.
  • E. Haus and L. Thomann, “Dynamics on resonant clusters for the quintic nonlinear Schrödinger equation”, Dyn. Partial Differ. Equ. 10:2 (2013), 157–169.
  • S. B. Kuksin, “On squeezing and flow of energy for nonlinear wave equations”, Geom. Funct. Anal. 5:4 (1995), 668–701.
  • S. B. Kuksin, “Growth and oscillations of solutions of nonlinear Schrödinger equation”, Comm. Math. Phys. 178:2 (1996), 265–280.
  • S. B. Kuksin, “On turbulence in nonlinear Schrödinger equations”, Geom. Funct. Anal. 7:4 (1997), 783–822.
  • S. B. Kuksin, “Oscillations in space-periodic nonlinear Schrödinger equations”, Geom. Funct. Anal. 7:2 (1997), 338–363.
  • S. B. Kuksin, “Spectral properties of solutions for nonlinear PDEs in the turbulent regime”, Geom. Funct. Anal. 9:1 (1999), 141–184.
  • S. Kuksin and J. P öschel, “Invariant Cantor manifolds of quasi-periodic oscillations for a nonlinear Schrödinger equation”, Ann. of Math. $(2)$ 143:1 (1996), 149–179.
  • O. Pocovnicu, “Explicit formula for the solution of the Szegö equation on the real line and applications”, Discrete Contin. Dyn. Syst. 31:3 (2011), 607–649.
  • O. Pocovnicu, “First and second order approximations for a nonlinear wave equation”, J. Dynam. Differential Equations 25:2 (2013), 305–333.
  • J. P öschel, “A KAM-theorem for some nonlinear partial differential equations”, Ann. Scuola Norm. Sup. Pisa Cl. Sci. $(4)$ 23:1 (1996), 119–148.
  • J. P öschel, “On the construction of almost periodic solutions for a nonlinear Schrödinger equation”, Ergodic Theory Dynam. Systems 22:5 (2002), 1537–1549.
  • M. Procesi and C. Procesi, “A normal form for the Schrödinger equation with analytic non-linearities”, Comm. Math. Phys. 312:2 (2012), 501–557.
  • C. Procesi and M. Procesi, “A KAM algorithm for the resonant non-linear Schrödinger equation”, Adv. Math. 272 (2015), 399–470.
  • M. Procesi and X. Xu, “Quasi-Töplitz functions in KAM theorem”, SIAM J. Math. Anal. 45:4 (2013), 2148–2181.
  • G. Staffilani, “On the growth of high Sobolev norms of solutions for KdV and Schrödinger equations”, Duke Math. J. 86:1 (1997), 109–142.
  • W.-M. Wang, “Logarithmic bounds on Sobolev norms for time dependent linear Schrödinger equations”, Comm. Partial Differential Equations 33:10-12 (2008), 2164–2179.
  • W.-M. Wang, “Supercritical nonlinear Schrödinger equations, II: Almost global existence”, preprint, 2010.
  • W.-M. Wang, “Supercritical nonlinear Schrödinger equations: quasi-periodic solutions”, preprint, 2014. 1007.0156
  • C. E. Wayne, “Periodic and quasi-periodic solutions of nonlinear wave equations via KAM theory”, Comm. Math. Phys. 127:3 (1990), 479–528.