Analysis & PDE

  • Anal. PDE
  • Volume 8, Number 4 (2015), 807-837.

Classification of blowup limits for $\mathrm{SU}(3)$ singular Toda systems

Chang-Shou Lin, Jun-cheng Wei, and Lei Zhang

Full-text: Access denied (no subscription detected)

However, an active subscription may be available with MSP at msp.org/apde.

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Abstract

For singular SU(3) Toda systems, we prove that the limit of energy concentration is a finite set. In addition, for fully bubbling solutions we use a Pohozaev identity to prove a uniform estimate. Our results extend previous results of Jost, Lin and Wang on regular SU(3) Toda systems.

Article information

Source
Anal. PDE, Volume 8, Number 4 (2015), 807-837.

Dates
Received: 24 April 2014
Revised: 21 January 2015
Accepted: 6 March 2015
First available in Project Euclid: 16 November 2017

Permanent link to this document
https://projecteuclid.org/euclid.apde/1510843114

Digital Object Identifier
doi:10.2140/apde.2015.8.807

Mathematical Reviews number (MathSciNet)
MR3366004

Zentralblatt MATH identifier
1322.35038

Subjects
Primary: 35J60: Nonlinear elliptic equations
Secondary: 35J55

Keywords
$\operatorname{SU}(n+1)$-Toda system asymptotic analysis a priori estimate classification theorem topological degree blowup solutions

Citation

Lin, Chang-Shou; Wei, Jun-cheng; Zhang, Lei. Classification of blowup limits for $\mathrm{SU}(3)$ singular Toda systems. Anal. PDE 8 (2015), no. 4, 807--837. doi:10.2140/apde.2015.8.807. https://projecteuclid.org/euclid.apde/1510843114


Export citation

References

  • D. Bartolucci and A. Malchiodi, “An improved geometric inequality via vanishing moments, with applications to singular Liouville equations”, Comm. Math. Phys. 322:2 (2013), 415–452.
  • D. Bartolucci and G. Tarantello, “The Liouville equation with singular data: a concentration-compactness principle via a local representation formula”, J. Differential Equations 185:1 (2002), 161–180.
  • D. Bartolucci and G. Tarantello, “Liouville type equations with singular data and their applications to periodic multivortices for the electroweak theory”, Comm. Math. Phys. 229:1 (2002), 3–47.
  • D. Bartolucci, C.-C. Chen, C.-S. Lin, and G. Tarantello, “Profile of blow-up solutions to mean field equations with singular data”, Comm. Partial Differential Equations 29:7-8 (2004), 1241–1265.
  • L. Battaglia and A. Malchiodi, “A Moser–Trudinger inequality for the singular Toda system”, Bull. Inst. Math., Acad. Sin. $($N.S.$)$ 9:1 (2014), 1–23.
  • W. H. Bennet, “Magnetically self-focusing streams”, Phys. Rev. 45 (1934), 890–897.
  • J. Bolton and L. M. Woodward, “Some geometrical aspects of the $2$-dimensional Toda equations”, pp. 69–81 in Geometry, topology and physics (Campinas, 1996), edited by B. N. Apanasov et al., de Gruyter, Berlin, 1997.
  • J. Bolton, G. R. Jensen, M. Rigoli, and L. M. Woodward, “On conformal minimal immersions of $S\sp 2$ into $\mathbb{C} \mathrm{P}\sp n$”, Math. Ann. 279:4 (1988), 599–620.
  • E. Calabi, “Isometric imbedding of complex manifolds”, Ann. of Math. $(2)$ 58 (1953), 1–23.
  • S. Chanillo and M. K.-H. Kiessling, “Conformally invariant systems of nonlinear PDE of Liouville type”, Geom. Funct. Anal. 5:6 (1995), 924–947.
  • W. X. Chen and C. Li, “Classification of solutions of some nonlinear elliptic equations”, Duke Math. J. 63:3 (1991), 615–622.
  • W. X. Chen and C. Li, “Qualitative properties of solutions to some nonlinear elliptic equations in $\mathbb{R}\sp 2$”, Duke Math. J. 71:2 (1993), 427–439.
  • C.-C. Chen and C.-S. Lin, “Estimate of the conformal scalar curvature equation via the method of moving planes, II”, J. Differential Geom. 49:1 (1998), 115–178.
  • C.-C. Chen and C.-S. Lin, “Sharp estimates for solutions of multi-bubbles in compact Riemann surfaces”, Comm. Pure Appl. Math. 55:6 (2002), 728–771.
  • C.-C. Chen and C.-S. Lin, “Topological degree for a mean field equation on Riemann surfaces”, Comm. Pure Appl. Math. 56:12 (2003), 1667–1727.
  • S. S. Chern and J. G. Wolfson, “Harmonic maps of the two-sphere into a complex Grassmann manifold, II”, Ann. of Math. $(2)$ 125:2 (1987), 301–335.
  • S. Childress and J. K. Percus, “Nonlinear aspects of chemotaxis”, Math. Biosci. 56:3-4 (1981), 217–237.
  • M. Chipot, I. Shafrir, and G. Wolansky, “On the solutions of Liouville systems”, J. Differential Equations 140:1 (1997), 59–105.
  • P. Debye and E. Huckel, “Zur Theorie der Electrolyte, II: Das Grengzgesetz für die elektrische Leitfähigkeit”, Phys. Zft. 24:10 (1923), 305–325.
  • A. Doliwa, “Holomorphic curves and Toda systems”, Lett. Math. Phys. 39:1 (1997), 21–32.
  • G. Dunne, Self-dual Chern–Simons theories, Lecture Notes in Physics Monographs 36, Springer, Berlin, 1995.
  • G. V. Dunne, R. Jackiw, S.-Y. Pi, and C. A. Trugenberger, “Self-dual Chern–Simons solitons and two-dimensional nonlinear equations”, Phys. Rev. D $(3)$ 43:4 (1991), 1332–1345.
  • N. Ganoulis, P. Goddard, and D. Olive, “Self-dual monopoles and Toda molecules”, Nuclear Phys. B 205:4 (1982), 601–636.
  • M. A. Guest, Harmonic maps, loop groups, and integrable systems, London Mathematical Society Student Texts 38, Cambridge University Press, Cambridge, 1997.
  • J. Jost, C. Lin, and G. Wang, “Analytic aspects of the Toda system, II: Bubbling behavior and existence of solutions”, Comm. Pure Appl. Math. 59:4 (2006), 526–558.
  • E. F. Keller and L. A. Segel, “Traveling bands of Chemotactic Bacteria: A theoretical analysis”, J. Theor. Biol. 30:2 (1971), 235–248.
  • M. K.-H. Kiessling and J. L. Lebowitz, “Dissipative stationary plasmas: kinetic modeling, Bennett's pinch and generalizations”, Phys. Plasmas 1:6 (1994), 1841–1849.
  • A. N. Leznov, “On complete integrability of a nonlinear system of partial differential equations in two-dimensional space”, Teoret. Mat. Fiz. 42:3 (1980), 343–349. In Russian; translated in Theor. Math. Phys. 42 (1980), 224–229.
  • A. N. Leznov and M. V. Saveliev, Group-theoretical methods for integration of nonlinear dynamical systems, Progress in Physics 15, Birkhäuser, Basel, 1992.
  • Y. Y. Li, “Prescribing scalar curvature on $S\sp n$ and related problems, I”, J. Differential Equations 120:2 (1995), 319–410.
  • Y. Y. Li, “Harnack type inequality: the method of moving planes”, Comm. Math. Phys. 200:2 (1999), 421–444.
  • C.-S. Lin and L. Zhang, “Profile of bubbling solutions to a Liouville system”, Ann. Inst. H. Poincaré Anal. Non Linéaire 27:1 (2010), 117–143.
  • C.-S. Lin and L. Zhang, “A topological degree counting for some Liouville systems of mean field type”, Comm. Pure Appl. Math. 64:4 (2011), 556–590.
  • C.-S. Lin, J. Wei, and D. Ye, “Classification and nondegeneracy of $\mathrm{SU}(n+1)$ Toda system with singular sources”, Invent. Math. 190:1 (2012), 169–207.
  • C.-S. Lin, J. Wei, and C. Zhao, “Sharp estimates for fully bubbling solutions of a $ \mathrm{SU}(3)$ Toda system”, Geom. Funct. Anal. 22:6 (2012), 1591–1635.
  • A. Malchiodi and C. B. Ndiaye, “Some existence results for the Toda system on closed surfaces”, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei $(9)$ Mat. Appl. 18:4 (2007), 391–412.
  • A. Malchiodi and D. Ruiz, “A variational analysis of the Toda system on compact surfaces”, Comm. Pure Appl. Math. 66:3 (2013), 332–371.
  • P. Mansfield, “Solution of Toda systems”, Nuclear Phys. B 208:2 (1982), 277–300.
  • M. S. Mock, “Asymptotic behavior of solutions of transport equations for semiconductor devices”, J. Math. Anal. Appl. 49 (1975), 215–225.
  • M. Musso, A. Pistoia, and J. Wei, “New concentration phenomena for $\mathrm{SU}(3)$ Toda system”, preprint, 2015.
  • M. Nolasco and G. Tarantello, “Double vortex condensates in the Chern–Simons–Higgs theory”, Calc. Var. Partial Differential Equations 9:1 (1999), 31–94.
  • M. Nolasco and G. Tarantello, “Vortex condensates for the $\mathrm{SU}(3)$ Chern–Simons theory”, Comm. Math. Phys. 213:3 (2000), 599–639.
  • J. Prajapat and G. Tarantello, “On a class of elliptic problems in $\mathbb{R}\sp 2$: symmetry and uniqueness results”, Proc. Roy. Soc. Edinburgh Sect. A 131:4 (2001), 967–985.
  • R. Schoen, “Topics in differential geometry”, lecture notes, Stanford University, 1988.
  • Y. Yang, “The relativistic non-abelian Chern–Simons equations”, Comm. Math. Phys. 186:1 (1997), 199–218.
  • Y. Yang, Solitons in field theory and nonlinear analysis, Springer, New York, 2001. http://msp.org/idx/zbl/0982.35003Zbl 0982.35003