Advances in Operator Theory

Some approximation properties and nuclear operators in spaces of analytical functions

Sten Kaijser and Oleg I‎. ‎Reinov

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Abstract

‎‎We introduce and investigate a new notion of the approximation property $AP_{[c]},$‎ ‎where $c= (c_n)$ is an arbitrary positive real sequence‎, ‎tending to infinity‎. ‎Also‎, ‎we study the corresponding notion of $[c]$-nuclear operators in Banach spaces‎. ‎Some characterization of the $AP_{[c]}$ in terms of tensor products‎, ‎as well as‎ ‎sufficient conditions for a Banach space to have the $AP_{[c]},$ are given‎. ‎We give also sufficient conditions for a positive answer to the question‎: ‎When it follows from the $[c]$-nuclearity of an adjoint operator the nuclearity of‎ ‎the operator itself‎. ‎Obtained results are applied then to the study of properties‎ ‎of nuclear operators in some spaces of analytical functions‎. ‎Many examples are given‎.

Article information

Source
Adv. Oper. Theory, Volume 4, Number 1 (2019), 265-283.

Dates
Received: 1 May 2018
Accepted: 25 August 2018
First available in Project Euclid: 20 September 2018

Permanent link to this document
https://projecteuclid.org/euclid.aot/1537408976

Digital Object Identifier
doi:10.15352/aot.1805-1360

Mathematical Reviews number (MathSciNet)
MR3867345

Zentralblatt MATH identifier
06946454

Subjects
Primary: 46B28: Spaces of operators; tensor products; approximation properties [See also 46A32, 46M05, 47L05, 47L20]
Secondary: 46E15: Banach spaces of continuous, differentiable or analytic functions

Keywords
nuclear operator‎ ‎tensor product‎ ‎approximation property‎‎ ‎space of bounded analytical functions

Citation

Kaijser, Sten; ‎Reinov, Oleg I‎. Some approximation properties and nuclear operators in spaces of analytical functions. Adv. Oper. Theory 4 (2019), no. 1, 265--283. doi:10.15352/aot.1805-1360. https://projecteuclid.org/euclid.aot/1537408976


Export citation

References

  • J. Bourgain and O. I. Reinov, On the approximation properties for the space $H^{\infty}$, Math. Nachr. 122 (1985), 19–27.
  • P. G. Casazza, C. L. García, and W. B. Johnson, An example of an asymptotically Hilbertian space which fails the approximation property, Proc. Amer. Math. Soc. 129 (2001), no. 10, 3017–3024.
  • A. M. Davie, The approximation problem for Banach spaces, Bull. London Math. Soc. 5 (1973), 261–266.
  • J. Dieudonné and L. Schwartz, La dualité dans les espaces $(\mathcal F)$ et $\mathcal{LF}$, Ann. Inst. Fourier Grenoble 1 (1949), 61–101.
  • T. Figiel and W. B. Johnson, The approximation property does not imply the bounded approximation property, Proc. Amer. Math. Soc. 41 (1973), 197–200.
  • A. Grothendieck, Produits tensoriels topologiques et espaces nucléaires, Mem. Amer. Math. Soc. 16, 1955.
  • M. \uI. Kadec and M. G. Snobar, Certain functionals on the Minkowski compactum (in Russian), Mat. Zametki 10 (1971), 453–458.
  • S. Kaijser and O. Reinov, Approximation properties of the space $H^{\infty}$, Voronezh Winter Mathematical School “Modern methods of theory of functions and related problems" 2003, Jan 26–Feb 2. Voronezh: VGU (2003), 113–114.
  • J. Lindenstrauss, On James' paper “Separable conjugate spaces", Israel J. Math. 9 (1971), 279–284.
  • J. Lindenstrauss and L.Tzafriri, Classical Banach spaces, vol.1: Sequence spaces, Berlin-Heidelberg-New York, 1977.
  • F. Muñoz, E. Oja, and C. Piñeiro, On $\alpha$-nuclear operators with applications to vector-valued function spaces, J. Funct. Anal. 269 (2015), 2871–2889.
  • E. Oja, Grothendieck's nuclear operator theorem revisited with an application to p-null sequences, J Funct. Anal. 263 (2012), 2876–2892.
  • E. Oja and O. I. Reinov, Un contre-exemple à une affirmation de A.Grothendieck, C. R. Acad. Sc. Paris. – Serie I 305 (1987), 121–122.
  • E. Oja and O. Reinov, A counterexample to A. Grothendieck, Proc. Acad. Est. SSR, Phys.-Math. 37 (1988), 14–17 (in Russian), Estonian and English summaries.
  • A. Pełczyński, Banach spaces of analytic functions and absolutely summing operators, AMS Regional Conference Series in Mathematics 30, Providence, 1977.
  • A. Pietsch, Operator ideals, North-Holland Mathematical Library, Vol. 20. Amsterdam - New York - Oxford: North-Holland Publishing Company, 1980.
  • G. Pisier, Estimations des distances à un espace euclidien et des constantes de projéction des espaces de Banach de dimensions finie, Seminaire d'Analyse Fonctionelle 1978-1979, Centre de Math., Ecole Polytech., Paris (1979), exposé 10, 1–21.
  • O. I. Reinov, Banach spaces without approximation property, Funct. Anal. Appl. 16 (1982), no. 4, 315–317.
  • O. I. Reinov, Approximation properties of order $p$ and the existence of non-$p$-nuclear operators with $p$-nuclear second adjoints, Math. Nachr. 109 (1982), 125–134.
  • O. I. Reinov, A simple proof of two theorems of A. Grothendieck, Vestn. Leningr. Univ. 7 (1983), 115–116 (in Russian).
  • O. Reinov, A survey of some results in connection with Grothendieck approximation property, Math. Nachr. 119 (1984), 257–264.
  • O. I. Reinov, Approximation properties $AP_s$ and $p$-nuclear operators (the case $0 <s\le 1)$, (Russian); translated from Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 270 (2000), Issled. po LineÄ­n. Oper. i Teor. Funkts. 28, 277–291, 368–369 J. Math. Sci. (N. Y.) 115 (2003), no. 2, 2243–2250.
  • O. I. Reinov, On linear operators with $s$-nuclear adjoints, $0<s\le1$, J. Math. Anal. Appl. 415 (2014), 816–824.
  • O. Reinov, Some remarks on approximation properties with applications, Ordered Structures and Applications: Positivity VII, Trends in Mathematics, Birkháuser, Basel, 2016, 371–394.
  • R. A. Ryan, Introduction to tensor products of Banach spaces, Springer Monogr. Math., Springer-Verlag, London, 2002.
  • A. Szankowski, Subspaces without the approximation property, Israel J. Math. 30 (1978), no. 1-2, 123–129.