The Annals of Statistics

Multiscale Testing of Qualitative Hypotheses

Lutz Dümbgen and Vladimir G. Spokoiny

Full-text: Open access

Abstract

Suppose that one observes a process Y on the unit interval, where dY(t) =n1/2 f(t)dt +dW (t) with an unknown function parameter f, given scale parameter n <=1 ("sample size") and standard Brownian motion W. We propose two classes of tests of qualitative nonparametric hypotheses about f such as monotonicity or concavity. These tests are asymptotically optimal and adaptive in a certain sense. They are constructed via a new class of multiscale statistics and an extension of Lévy's modulus of continuity of Brownian motion.

Article information

Source
Ann. Statist., Volume 29, Number 1 (2001), 124-152.

Dates
First available in Project Euclid: 5 August 2001

Permanent link to this document
https://projecteuclid.org/euclid.aos/996986504

Digital Object Identifier
doi:10.1214/aos/996986504

Mathematical Reviews number (MathSciNet)
MR1833961

Zentralblatt MATH identifier
1029.62070

Subjects
Primary: 62G10: Hypothesis testing
Secondary: 62G20: Asymptotic properties

Keywords
adaptivity concavity Lévy's modulus of continuity monotonicity multiple test nonparametric positivity

Citation

Dümbgen, Lutz; Spokoiny, Vladimir G. Multiscale Testing of Qualitative Hypotheses. Ann. Statist. 29 (2001), no. 1, 124--152. doi:10.1214/aos/996986504. https://projecteuclid.org/euclid.aos/996986504


Export citation

References

  • Brown, L. D. and Low, M. G. (1996). Asymptotic equivalence of nonparametric regression and white noise. Ann. Statist. 24 2384-2398.
  • Chaudhuri, P. and Marron, J. S. (1999). SiZer for exploration of structures in curves. J. Amer. Statist. Assoc. 94 807-823.
  • Cheng, M.-Y. and Hall, P. (1999). Mode testingin difficult cases. Ann. Statist. 27 1294-1315. Donoho, D. (1994a). Statistical estimation and optimal recovery. Ann. Statist. 22 238-270. Donoho, D. (1994b). Asymptotic minimax risk for sup-norm: solution via optimal recovery. Probab. Theory Related Fields 99 145-170.
  • Donoho, D. and Low, M. (1992). Ronormalization exponents and optimal pointwise rates of convergence. Ann. Statist. 20 944-970.
  • D ¨umbgen, L. (1998). Application of local rank tests to nonparametric regression. Preprint.
  • D ¨umbgen, L. (2000). Optimal confidence bands for shape-restricted curves. Preprint.
  • Ermakov, M. S. (1990). Minimax detection of a signal in a white Gaussian noise. Theory Probab. Appl. 35 667-679.
  • Eubank, R. L. and Hart, J. D. (1992). Testing goodness of fit in regression via order selection criteria. Ann. Statist. 20 1412-1425.
  • Fan, J. (1996). Test of significance based on wavelet thresholding and Neyman's truncation. J. Amer. Statist. Assoc. 91 674-688.
  • Gasser, T., Sroka, L. and Jennen-Steinmetz, C. (1986). Residual variance and residual pattern in nonlinear regression. Biometrika 73 625-633.
  • Grama, I. and Nussbaum, M. (1998). Asymptotic equivalence for nonparametric generalized linear models. Probab. Theory Related Fields 111 167-214.
  • Hall, P. and Heckman, N. E. (2000). Testingfor monotonicity of a regression mean by calibrating for linear functions. Ann. Statist. 28 20-39.
  • Hart, J. (1997). Nonparametric Smoothing and Lack-of-Fit Tests. Springer, New York.
  • Hartigan, J. A. and Hartigan, P. M. (1985). The dip test of unimodality. Ann. Statist. 13 70-84.
  • Ibragimov, I. A. and Khasminskii, R. Z. (1980). Estimates of signal, its derivatives, and point of maximum for Gaussian observations. Theory Probab. Appl. 25 703-716.
  • Ingster, Y. I. (1986). Minimax testingof nonparametric hypothesis on a distribution density in Lp-metrics. Theory Probab. Appl. 32 333-337.
  • Ingster, Y. I. (1993). Asymptotically minimax hypothesis testingfor nonparametric alternatives. I-III. Math. Methods Statist. 2 85-114, 171-189, 249-268.
  • Koul, H. L. and Schick, A. (1997). Testingfor the equality of two nonparametric regression curves. J. Statist. Plann. Inference 65 293-314.
  • Ledwina, T. (1994). Data-driven version of Neyman's smooth test of fit. J. Amer. Statist. Assoc. 89 1000-1005.
  • Ledwina, T. and Kallenberg, W. C. M. (1995). Consistency and Monte Carlo simulation of a data driven version of smooth goodness-of-fit tests. Ann. Statist. 23 1594-1608.
  • Leonov, S. L. (1999). Remarks on extremal problems in nonparametric curve estimation. Statist. Probab. Lett. 43 169-178.
  • Lepski, O. V. and Tsybakov, A. B. (2000). Asymptotically exact nonparametric hypothesis testing in sup-norm and at a fixed point. Probab. Theory Related Fields 117 17-48.
  • Mammen, E., Marron, J. S. and Fisher, N. I. (1992). Some asymptotics for multimodality tests based on kernel density estimates. Probab. Theory Related Fields 91 115-132.
  • M ¨uller, D. W. and Sawitzki, G. (1991). Excess mass estimates and tests for multimodality. J. Amer. Statist. Assoc. 86 738-746.
  • Nussbaum, M. (1996). Asymptotic equivalence of density estimation and white noise. Ann. Statist. 24 2399-2430.
  • Rice, J. (1984). Bandwidth choice for nonparametric regression. Ann. Statist. 12 1215-1230.
  • Shorack, G. R. and Wellner, J. A. (1986). Empirical Processes with Applications to Statistics. Wiley, New York.
  • Silverman, B. W. (1981). Usingkernel density estimates to investigate multimodality. J. Roy. Statist. Soc. Ser. B 43 97-99.
  • Spokoiny, V. (1996). Adaptive hypothesis testingusingwavelets. Ann. Statist. 24 2477-2498.
  • Spokoiny, V. (1998). Adaptive and spatially adaptive testinga nonparametric hypothesis. Math. Methods Statist. 7 245-273.
  • van der Vaart, A. W. and Wellner, J. A. (1996). Weak Convergence and Empirical Processes with Applications to Statistics. Springer, New York.