Abstract
This paper studies the inference problem in quantile regression (QR) for a large sample size $n$ but under a limited memory constraint, where the memory can only store a small batch of data of size $m$. A natural method is the naive divide-and-conquer approach, which splits data into batches of size $m$, computes the local QR estimator for each batch and then aggregates the estimators via averaging. However, this method only works when $n=o(m^{2})$ and is computationally expensive. This paper proposes a computationally efficient method, which only requires an initial QR estimator on a small batch of data and then successively refines the estimator via multiple rounds of aggregations. Theoretically, as long as $n$ grows polynomially in $m$, we establish the asymptotic normality for the obtained estimator and show that our estimator with only a few rounds of aggregations achieves the same efficiency as the QR estimator computed on all the data. Moreover, our result allows the case that the dimensionality $p$ goes to infinity. The proposed method can also be applied to address the QR problem under distributed computing environment (e.g., in a large-scale sensor network) or for real-time streaming data.
Citation
Xi Chen. Weidong Liu. Yichen Zhang. "Quantile regression under memory constraint." Ann. Statist. 47 (6) 3244 - 3273, December 2019. https://doi.org/10.1214/18-AOS1777
Information