The Annals of Statistics

Goodness-of-fit tests for the functional linear model based on randomly projected empirical processes

Juan A. Cuesta-Albertos, Eduardo García-Portugués, Manuel Febrero-Bande, and Wenceslao González-Manteiga

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text


We consider marked empirical processes indexed by a randomly projected functional covariate to construct goodness-of-fit tests for the functional linear model with scalar response. The test statistics are built from continuous functionals over the projected process, resulting in computationally efficient tests that exhibit root-$n$ convergence rates and circumvent the curse of dimensionality. The weak convergence of the empirical process is obtained conditionally on a random direction, whilst the almost surely equivalence between the testing for significance expressed on the original and on the projected functional covariate is proved. The computation of the test in practice involves calibration by wild bootstrap resampling and the combination of several $p$-values, arising from different projections, by means of the false discovery rate method. The finite sample properties of the tests are illustrated in a simulation study for a variety of linear models, underlying processes, and alternatives. The software provided implements the tests and allows the replication of simulations and data applications.

Article information

Ann. Statist., Volume 47, Number 1 (2019), 439-467.

Received: March 2017
Revised: February 2018
First available in Project Euclid: 30 November 2018

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 62G10: Hypothesis testing 62J05: Linear regression
Secondary: 62G09: Resampling methods

Empirical process functional data functional linear model functional principal components goodness-of-fit random projections


Cuesta-Albertos, Juan A.; García-Portugués, Eduardo; Febrero-Bande, Manuel; González-Manteiga, Wenceslao. Goodness-of-fit tests for the functional linear model based on randomly projected empirical processes. Ann. Statist. 47 (2019), no. 1, 439--467. doi:10.1214/18-AOS1693.

Export citation


  • Aneiros-Pérez, G. and Vieu, P. (2006). Semi-functional partial linear regression. Statist. Probab. Lett. 76 1102–1110.
  • Benjamini, Y. and Yekutieli, D. (2001). The control of the false discovery rate in multiple testing under dependency. Ann. Statist. 29 1165–1188.
  • Bickel, P. J. and Rosenblatt, M. (1973). On some global measures of the deviations of density function estimates. Ann. Statist. 1 1071–1095.
  • Bierens, H. J. (1982). Consistent model specification tests. J. Econometrics 20 105–134.
  • Billingsley, P. (1968). Convergence of Probability Measures. Wiley, New York.
  • Bücher, A., Dette, H. and Wieczorek, G. (2011). Testing model assumptions in functional regression models. J. Multivariate Anal. 102 1472–1488.
  • Cardot, H., Mas, A. and Sarda, P. (2007). CLT in functional linear regression models. Probab. Theory Related Fields 138 325–361.
  • Cardot, H., Ferraty, F., Mas, A. and Sarda, P. (2003). Testing hypotheses in the functional linear model. Scand. J. Stat. 30 241–255.
  • Chiou, J.-M. and Müller, H.-G. (2007). Diagnostics for functional regression via residual processes. Comput. Statist. Data Anal. 51 4849–4863.
  • Cuesta-Albertos, J. A. and Febrero-Bande, M. (2010). A simple multiway ANOVA for functional data. TEST 19 537–557.
  • Cuesta-Albertos, J. A., Fraiman, R. and Ransford, T. (2007). A sharp form of the Cramér–Wold theorem. J. Theoret. Probab. 20 201–209.
  • Cuesta-Albertos, J. A., del Barrio, E., Fraiman, R. and Matrán, C. (2007). The random projection method in goodness of fit for functional data. Comput. Statist. Data Anal. 51 4814–4831.
  • Cuesta-Albertos, J. A., García-Portugués, E., Febrero-Bande, M. and González-Manteiga, W. (2019). Supplement to “Goodness-of-fit tests for the functional linear model based on randomly projected empirical processes.” DOI:10.1214/18-AOS1693SUPP.
  • D’Agostino, R. B. and Stephens, M. A., eds. (1986) Goodness-of-Fit Techniques. Statistics: Textbooks and Monographs 68. Dekker, Inc., New York.
  • Delsol, L., Ferraty, F. and Vieu, P. (2011a). Structural test in regression on functional variables. J. Multivariate Anal. 102 422–447.
  • Delsol, L., Ferraty, F. and Vieu, P. (2011b). Structural tests in regression on functional variable. In Recent Advances in Functional Data Analysis and Related Topics 77–83. Physica-Verlag/Springer, Heidelberg.
  • Durbin, J. (1973). Weak convergence of the sample distribution function when parameters are estimated. Ann. Statist. 1 279–290.
  • Escanciano, J. C. (2006). A consistent diagnostic test for regression models using projections. Econometric Theory 22 1030–1051.
  • Febrero-Bande, M. and Oviedo de la Fuente, M. (2017). fda.usc: Functional Data Analysis and Utilities for Statistical Computing (fda.usc). R package version 1.3.1. Available at
  • Ferraty, F. and Vieu, P. (2006). Nonparametric Functional Data Analysis: Theory and Practice. Springer, New York.
  • Fraiman, R. and Muniz, G. (2001). Trimmed means for functional data. TEST 10 419–440.
  • García-Portugués, E., González-Manteiga, W. and Febrero-Bande, M. (2014). A goodness-of-fit test for the functional linear model with scalar response. J. Comput. Graph. Statist. 23 761–778.
  • González-Manteiga, W. and Crujeiras, R. M. (2013). An updated review of goodness-of-fit tests for regression models. TEST 22 361–411.
  • Härdle, W. and Mammen, E. (1993). Comparing nonparametric versus parametric regression fits. Ann. Statist. 21 1926–1947.
  • Hilgert, N., Mas, A. and Verzelen, N. (2013). Minimax adaptive tests for the functional linear model. Ann. Statist. 41 838–869.
  • Hoffmann-Jørgensen, J. and Pisier, G. (1976). The law of large numbers and the central limit theorem in Banach spaces. Ann. Probab. 4 587–599.
  • Horváth, L. and Kokoszka, P. (2012). Inference for Functional Data with Applications. Springer, New York.
  • Horváth, L. and Reeder, R. (2013). A test of significance in functional quadratic regression. Bernoulli 19 2120–2151.
  • Kokoszka, P., Maslova, I., Sojka, J. and Zhu, L. (2008). Testing for lack of dependence in the functional linear model. Canad. J. Statist. 36 207–222.
  • Lavergne, P. and Patilea, V. (2008). Breaking the curse of dimensionality in nonparametric testing. J. Econometrics 143 103–122.
  • McQuarrie, A. D. (1999). A small-sample correction for the Schwarz SIC model selection criterion. Statist. Probab. Lett. 44 79–86.
  • Nadaraja, È. A. (1964). On a regression estimate. Teor. Veroyatn. Primen. 9 157–159.
  • Patilea, V., Sánchez-Sellero, C. and Saumard, M. (2012). Projection-based nonparametric testing for functional covariate effect. Preprint. Available at arXiv:1205.5578.
  • Patilea, V., Sánchez-Sellero, C. and Saumard, M. (2016). Testing the predictor effect on a functional response. J. Amer. Statist. Assoc. 111 1684–1695.
  • Ramsay, J. O. and Silverman, B. W. (2005). Functional Data Analysis, 2nd ed. Springer, New York.
  • Stute, W. (1997). Nonparametric model checks for regression. Ann. Statist. 25 613–641.
  • Stute, W., González Manteiga, W. and Presedo Quindimil, M. (1998). Bootstrap approximations in model checks for regression. J. Amer. Statist. Assoc. 93 141–149.
  • Watson, G. S. (1964). Smooth regression analysis. Sankhya, Ser. A 26 359–372.
  • Zheng, J. X. (1996). A consistent test of functional form via nonparametric estimation techniques. J. Econometrics 75 263–289.

Supplemental materials

  • Supplement to “Goodness-of-fit tests for the functional linear model based on randomly projected empirical processes”. Two extra Appendices contain the proofs of the technical lemmas and further results for the simulation study.